

8845A/8846A Digital Multimeter

Mode d'emploi

LIMITES DE GARANTIE ET DE RESPONSABILITE

La société Fluke garantit l'absence de vices de matériaux et de fabrication de ses produits dans des conditions normales d'utilisation et d'entretien. La période de garantie est de un an et prend effet à la date d'expédition. Les pièces, les réparations de produit et les services sont garantis pendant 90 jours. Cette garantie ne s'applique qu'à l'acheteur d'origine ou à l'utilisateur final s'il est client d'un distributeur agréé par Fluke, et ne s'applique pas aux fusibles, aux batteries/piles interchangeables ni à aucun produit qui, de l'avis de Fluke, a été malmené, modifié, négligé, contaminé ou endommagé par accident ou soumis à des conditions anormales d'utilisation et de manipulation. Fluke garantit que le logiciel fonctionnera en grande partie conformément à ses spécifications fonctionnelles pendant une période de 90 jours et qu'il a été correctement enregistré sur des supports non défectueux. Fluke ne garantit pas que le logiciel est exempt d'erreurs ou qu'il fonctionnera sans interruption.

Les distributeurs agréés par Fluke appliqueront cette garantie à des produits vendus neufs et qui n'ont pas servi, mais ne sont pas autorisés à offrir une garantie plus étendue ou différente au nom de Fluke. Le support de garantie est offert uniquement si le produit a été acquis par l'intermédiaire d'un point de vente agréé par Fluke ou bien si l'acheteur a payé le prix international applicable. Fluke se réserve le droit de facturer à l'acheteur les frais d'importation des pièces de réparation ou de remplacement si le produit acheté dans un pays a été expédié dans un autre pays pour y être réparé.

L'obligation de garantie de Fluke est limitée, au choix de Fluke, au remboursement du prix d'achat, ou à la réparation/remplacement gratuit d'un produit défectueux retourné dans le délai de garantie à un centre de service agréé par Fluke.

Pour avoir recours au service de la garantie, mettez-vous en rapport avec le centre de service agréé Fluke le plus proche pour recevoir les références d'autorisation de renvoi, ou envoyez le produit, accompagné d'une description du problème, port et assurance payés (franco lieu de destination), à ce centre de service. Fluke décline toute responsabilité en cas de dégradations survenues au cours du transport. Après une réparation sous garantie, le produit sera retourné à l'acheteur, en port payé (franco lieu de destination). Si Fluke estime que le problème est le résultat d'une négligence, d'un traitement abusif, d'une contamination, d'une modification, d'un accident ou de conditions de fonctionnement ou de manipulation anormales, notamment de surtensions liées à une utilisation du produit en dehors des spécifications nominales, ou de l'usure normale des composants mécaniques, Fluke fournira un devis des frais de réparation et ne commencera la réparation qu'après en avoir reçu l'autorisation. Après la réparation, le produit sera renvoyé à l'acheteur, en port payé (franco point d'expédition) et les frais de réparation et de transport lui seront facturés.

LA PRESENTE GARANTIE EST EXCLUSIVE ET TIENT LIEU DE TOUTES AUTRES GARANTIES, EXPRESSES OU IMPLICITES, Y COMPRIS, MAIS NON EXCLUSIVEMENT, TOUTE GARANTIE IMPLICITE DE VALEUR MARCHANDE OU D'ADEQUATION A UN USAGE PARTICULIER. FLUKE NE POURRA ETRE TENU RESPONSABLE D'AUCUN DOMMAGE PARTICULIER, INDIRECT, ACCIDENTEL OU CONSECUTIF, NI D'AUCUNS DEGATS OU PERTES, DE DONNEES NOTAMMENT, SUR UNE BASE CONTRACTUELLE, EXTRA-CONTRACTUELLE OU AUTRE.

Etant donné que certaines juridictions n'admettent pas les limitations d'une condition de garantie implicite, ou l'exclusion ou la limitation de dégâts accidentels ou consécutifs, les limitations et les exclusions de cette garantie peuvent ne pas s'appliquer à chaque acheteur. Si une disposition quelconque de cette garantie est jugée non valide ou inapplicable par un tribunal ou un autre pouvoir décisionnel compétent, une telle décision n'affectera en rien la validité ou le caractère exécutoire de toute autre disposition.

Fluke Corporation P.O. Box 9090 Everett, WA 98206-9090 E.-U. Fluke Europe B.V. P.O. Box 1186 5602 BD Eindhoven Pays-Bas

11/99

Pour enregistrer votre produit en ligne, allez à register.fluke.com.

Table des matières

Chapitre	Titre	Page
1	Introduction et spécifications	1-1
	Introduction	1-3
	Les manuels	
	A propos de ce manuel	
	Informations sur la sécurité.	
	Sécurité générale	1-4
	Symboles	
	Procédures de sécurité de l'instrument	
	Mémoire volatile	1-6
	Mémoire non-volatile	1-7
	Modules mémoire (8846A uniquement)	1-7
	Accessoires	
	Caractéristiques générales	1-9
	Alimentation	
	Dimensions	1-9
	Afficheur	1-9
	Environnement	1-9
	Sécurité	1-9
	CEM	1-9
	Déclenchement	1-9
	Mémoire	
	Fonctions mathématiques	
	Electricité	1-10
	Interfaces à distance	1-10
	Garantie	1-10
	Caractéristiques électriques	1-10
	Caractéristiques de tension continue	1-10
	Caractéristiques de tension alternative	1-11
	Résistance	
	Courant continu	1-15
	Courant alternatif	1-16
	Fréquence	1-18
	Capacité (8846A uniquement)	
	Température (8846A uniquement)	
	Continuité	

	Contrôle de diode	1-20
	Taux de mesure	1-20
2	Préparation de l'instrument avant son utilisation	2-1
	Introduction	2-3
	Déballage et inspection du multimètre	2-3
	Pour contacter Fluke	
	Stockage et expédition du multimètre	2-3
	Remarques sur l'alimentation	
	Sélection de la tension secteur	
	Changement des fusibles	
	Raccordement à l'alimentation secteur	2-7
	Mise sous tension	2-8
	Réglage de la béquille	2-8
	Installation de l'instrument dans une baie d'équipement	2-9
	Nettoyage du multimètre	2-9
3	Fonctions de la face avant	3-1
	Introduction	3-3
	Commandes et indicateurs	
	Descriptions des fonctions de la face avant	
	Afficheur	
	Connecteurs de la face arrière	
	Réglage des gammes sur le multimètre	
	Navigation sur le menu de la face avant	
	Configuration du multimètre pour les mesures	
	Configuration de la résolution d'affichage	
	Réglage du filtre de signal alternatif	3-8
	Réglage des paramètres du contrôle de diode et du	
	seuil de résistance de continuité	3-8
	Réglage de l'échelle des températures par défaut (8846A uniquement)	
	Activation de l'impédance d'entrée automatique	
	Utilisation des fonctions d'analyse	
	Collecte des statistiques de mesures	
	Utilisation des tests de limites	3-11
	Définition d'une valeur décalée	
	Utilisation de la fonction MX+B	
	Graphe de tendance (TrendPlot)	
	Utilisation de la fonction Histogramme	
	Contrôle des fonctions de déclenchement	
	Sélection d'une source de déclenchement	
	Réglage du délai de déclenchement	3-16
	Définition du nombre d'échantillons	
	Explication du signal de « mesure terminée »	
	Accès et contrôle de la mémoire	
	Stockage des mesures en mémoire	
	Rappel des mesures de la mémoire.	
	Enregistrement des informations de configuration du multimètre	
	Rappel d'une configuration du multimètre	
	Gestion de la mémoire	
	Contrôle des opérations liées au système	
	Identification des erreurs de mesure	
	Interrogation du niveau de révision du micrologiciel	
	Réglage de la luminosité d'écran	3-21

	Réglage de la date et de l'heure de mesure	3-22
	Configuration de l'interface distante	
	Vérification de la date d'étalonnage du multimètre	3-22
	Rétablissement des paramètres par défaut du multimètre	
4	Réalisation des mesures	4-1
	Introduction	4-3
	Sélection des modificateurs de fonction	4-3
	Activation de l'affichage secondaire	4-3
	Mesures de tension.	4-4
	Mesures de tension continue	4-4
	Mesures de tensions alternatives	4-5
	Mesure de fréquence et de période	4-6
	Mesures de résistance	
	Mesure d'une résistance à deux fils	4-7
	Mesure d'une résistance à quatre fils	
	Mesures de courant	
	Mesures de courant continu	4-11
	Mesures de courant alternatif	
	Mesures de capacité (8846A uniquement)	4-13
	Mesure de température RTD (8846A uniquement)	
	Test de continuité	
	Vérification des diodes	4-15
	Réalisation d'une mesure déclenchée	4-16
	Réglage du mode de déclenchement	4-16
	Réglage du délai de déclenchement	
	Réglage du nombre d'échantillons par déclenchement	
	Branchement d'un déclenchement externe	
	Surveillance du signal de mesure terminée	
Appe	endices	
	A Cordons de mesure 2x4	A-1
	B Erreurs	
	C Connexions sur le port RS-232	

Indice

8845A/8846A

Mode d'emploi

Liste des tableaux

Tableau	Titre	Page
1-1.	Consignes de sécurité	1-5
	Symboles électriques et marquages de sécurité	
1-3.	Espace mémoire volatile	1-6
1-4.	Espace mémoire non-volatile	1-7
	Accessoires	
2-1.	Tension secteur et calibre de fusible	2-5
2-2.	Types de cordons secteur disponibles auprès de Fluke	2-7
3-1.	Connecteurs et commandes de la face avant	3-3
3-2.	Eléments d'affichage	3-5
	Connecteurs de la face arrière	
C-1.	Liste broches/signal RS-232.	C-1

8845A/8846A

Mode d'emploi

Liste des figures

Figure	Titre	Page
2-1.	Remplacement du fusible secteur	2-5
2-2.	Remplacement des fusibles d'entrée de courant	
2-3.	Types de cordons d'alimentation secteur proposés par Fluke	
2-4.	Retrait et réglage de la béquille	2-9
3-1.	Graphe de tendance (TrendPlot)	
3-2.	Affichage de l'histogramme	
4-1.	Branchement d'entrée pour les mesures de tension,	
	de résistance et de fréquence	4-4
4-2.	Branchements d'entrée pour les mesures de résistance à 4 fils	4-9
4-3.	Branchements d'entrée pour les mesures de résistance à 4 fils	
	à l'aide des cordons 2x4 fils	4-9
4-4.	Branchements d'entrée pour les mesures de courant inférieures à 120 mA	4-10
4-5.	Branchements d'entrée pour les mesures de courant supérieures à 120 mA	4-11
4-6.	Mesure de capacité	4-13
4-7.	Mesures de température	4-14
4-8.	Branchements des tests de diode	
4- 9.	Description des broches TRIG I/O	
A-1.	Cordons de mesure à 2x4 fils	

8845A/8846A

Mode d'emploi

Chapitre 1 Introduction et spécifications

Titre	Page
Introduction	1-3
Les manuels	
A propos de ce manuel	
Informations sur la sécurité.	
Sécurité générale	
Symboles	
Procédures de sécurité de l'instrument	
Mémoire volatile	
Mémoire non-volatile	
Modules mémoire (8846A uniquement)	
Accessoires	
Caractéristiques générales.	
Alimentation	
Dimensions	
Afficheur	
Environnement	
Sécurité	
CEM	
Déclenchement	1-9
Mémoire	
Fonctions mathématiques	1-10
Electricité	
Interfaces à distance	1-10
Garantie	1-10
Caractéristiques électriques	1-10
Caractéristiques de tension continue	
Caractéristiques de tension alternative	1-11
Résistance	1-13
Courant continu	1-15
Courant alternatif	1-16
Fréquence	1-18
Capacité (8846A uniquement)	1-19
Température (8846A uniquement)	1-19
Continuité	1-19

8845A/8846A

Mode d'emploi

Contrôle de diode	1-20
Taux de mesure	1-20

Introduction

Les 8845A et 8846A sont des multimètres à double affichage de 6½ chiffres de précision, conçus pour les applications sur les systèmes, l'utilisation sur table et sur le terrain. Leur panoplie complète de fonctions de mesure, associée à des interfaces à distance Ethernet, RS-232 et IEEE 488, font de ces multimètres de parfaits outils pour assurer des mesures manuelles de précision et intervenir sur les systèmes automatisés. Pour la portabilité, ces multimètres disposent d'une poignée de transport qui sert également de béquille pour les opérations sur table.

Plusieurs différences distinguent ces deux multimètres, et certaines spécifications sont plus exigeantes pour le modèle 8846A. Les fonctions spécifiques à ce modèle portent la mention « 8846A uniquement » pour signaler les fonctions spécifiques à ce multimètre. Des tableaux de caractéristiques distincts permettent également de distinguer les différences entre ces deux modèles.

La liste suivante présente plusieurs des fonctions et fonctionnalités.

- Afficheur à grand angle de vue à gros chiffres et lumineux
- Double affichage des deux propriétés d'un signal d'entrée (p. ex. tension c.a. dans une fenêtre et fréquence dans l'autre).
- Fonctionnement à distance avec l'interface IEEE 488, RS-232 et Ethernet.
- Déclenchement et mesure terminée
- Port USB sur la face avant pour une mémoire en option (8846A uniquement)
- Résolution à 6½ chiffres
- Largeur de demi-bâti
- Mesure eff. vraie en c.a.
- Mesures de résistance à 2 et 4 fils
- Gammes étendues à 10 Ω et 1 G Ω (8846A uniquement)
- Mesures en fréquence jusqu'à 300 Hz (1 MHz pour le 8846A).
- Mesure de capacité (8846A uniquement)
- Mesure de température (8846A uniquement)
- Capacité de courant 10 A
- Décibels (dB et dBm) avec impédance de référence variable et possibilité de mesure de la puissance audio
- Bornes d'entrée sur les faces avant et arrière du multimètre
- Etalonnage en boîtier fermé (aucun réglage d'étalonnage interne)

Les manuels

La documentation associée à ces multimètres comprend un *Mode d'emploi* et un *manuel de programmation* (Programmers Manual) sur CD ROM. Le *Mode d'emploi* contient des informations sur les spécifications, la configuration et le fonctionnement à partir de la face avant. Le *manuel de programmation* couvre le fonctionnement du multimètre à partir d'un contrôleur ou d'un ordinateur PC.

A propos de ce manuel

Ce *Mode d'emploi* est destiné aux multimètres numériques 8845A et 8846A (ci-après le « multimètre »). Il contient toutes les informations nécessaires au nouvel utilisateur pour utiliser efficacement le multimètre. Le manuel comprend les chapitres suivants :

Le chapter 1 « Introduction et spécifications » fournit des informations sur l'utilisation sécurisée du multimètre, ses accessoires en standard et en option et ses spécifications.

Le chapitre 2 « Préparation avant l'utilisation » fournit des informations sur le réglage de la tension secteur du multimètre, son branchement à une source d'alimentation et sa mise sous tension.

Le chapitre 3 « Fonctions de la face avant » présente les commandes et les branchements sur les faces avant et arrière du multimètre.

Le chapitre 4 « Réalisation des mesures » explique en détail l'utilisation du multimètre pour les mesures électriques.

Annexes

Informations sur la sécurité

Cette section décrit les consignes de sécurité à prendre en compte et les symboles susceptibles d'apparaître dans ce manuel ou sur l'instrument.

Un message **A Avertissement** identifie les situations et les pratiques susceptibles de provoquer des blessures, voire la mort.

Une mise en garde **Attention** indique des conditions et des pratiques qui risquent d'endommager l'instrument ou l'équipement auquel il est connecté.

△ △ Avertissement

Pour éviter les risques d'électrocution ou de blessures, voire mortelles, lire attentivement les « Consignes de sécurité » avant toute tentative d'installation, d'utilisation, d'entretien ou de réparation de l'instrument.

Sécurité générale

Cet instrument a été conçu et testé conformément aux publications des normes européennes EN 61010-1: 2001, et des normes américaines et canadiennes UL 61010-1A1 et CAN/CSA-C22.2 No.61010.1. Le multimètre a été fourni dans un état sécurisé.

Ce manuel contient des informations et des mises en garde que l'utilisateur doit respecter pour maintenir un fonctionnement sans danger et la sécurité de l'instrument.

Pour utiliser correctement l'instrument en toute sécurité, lisez et respectez les précautions mentionnées dans le tableau 1-1 ainsi que les mises en garde et les instructions fournies dans ce manuel relatives aux fonctions de mesure spécifiques. Respectez également toutes les procédures et mesures de sécurité acceptées au travail lorsque vous intervenez à proximité de sources d'électricité.

Tableau 1-1. Consignes de sécurité

∧ ∧ Avertissement

Respecter les mises en garde suivantes avant d'utiliser l'instrument pour éviter les risques éventuels d'électrocution, de blessures, voire mortelles :

- Utiliser uniquement l'appareil en respectant les indications de ce manuel afin de ne pas entraver sa protection intégrée.
- Ne pas utiliser le multimètre dans les environnements humides.
- Inspecter le multimètre avant de l'utiliser. Ne pas l'utiliser s'il semble endommagé.
- Inspecter les cordons de mesure avant de les utiliser. Ne pas les utiliser si l'isolant est endommagé ou si des parties métalliques sont mises à nu. Vérifier la continuité des cordons de mesure. Remplacer les cordons de mesure endommagés avant d'utiliser le multimètre.
- Vérifier le fonctionnement du multimètre en mesurant une tension connue avant et après son utilisation. Ne pas utiliser le multimètre s'il ne fonctionne pas normalement. Sa protection est probablement défectueuse. En cas de doute, faire vérifier l'appareil.
- Si la protection et la sécurité de l'instrument paraissent compromises, interdire son utilisation accidentelle en rendant l'appareil inopérationnel.
- Le multimètre ne doit être réparé ou entretenu que par des techniciens qualifiés.
- Ne jamais appliquer de tension supérieure à la tension nominale indiquée sur le multimètre, entre les bornes ou entre une borne quelconque et la prise de terre.
- Toujours utiliser le connecteur et le cordon d'alimentation appropriés à la tension et à la prise électrique du pays ou du site de travail.
- Retirer les cordons de mesure de l'appareil avant d'ouvrir le boîtier.
- Ne jamais enlever le couvercle ni ouvrir le boîtier du multimètre sans l'avoir préalablement débranché de la source d'alimentation principale.
- Ne jamais utiliser le multimètre si son couvercle a été enlevé ou si son boîtier est ouvert.
- Faire preuve de prudence en travaillant sur des tensions supérieures à 30 V c.a. efficaces, 42 V c.a. maximum ou à 42 V c.c. Ces tensions présentent un risque d'électrocution.
- N'utiliser que le ou les fusibles de remplacement spécifiés dans ce manuel.
- Utiliser la fonction, les bornes et la gamme qui conviennent pour l'application de mesure.
- Ne pas utiliser le multimètre à proximité de vapeurs, de poussières ou de gaz explosifs.
- En utilisant les sondes, placer les doigts derrière la collerette de protection.
- En établissant les raccordements électriques, brancher le cordon de mesure commun avant la polarité au potentiel ; pour déconnecter les cordons de mesure, commencer par celui au potentiel.
- Débrancher l'alimentation du circuit et décharger tous les condensateurs à tension élevée avant de contrôler la résistance, la continuité, les diodes ou la capacité.
- Avant de mesurer le courant, vérifier les fusibles du multimètre et mettre le circuit hors tension avant de relier le multimètre au circuit.
- En cas de réparation, n'utiliser que des pièces de rechange agréées.

Symboles

Le tableau 1-2 affiche une liste de divers symboles électriques et marquages de sécurité présents sur le multimètre et dans ce manuel.

Tableau 1-2. Symboles électriques et marquages de sécurité

Symbole	Description	Symbole	Description
Δ	Risque de danger. Informations importantes. Se reporter au manuel	(4)	MARCHE/ARRET
	Tension dangereuse. Présence potentielle d'une tension > 30 V c.c. ou c.a.	╣	Prise de terre
~	Courant alternatif (c.a.)	+	Capacité
	Courant continu (c.c.)		Diode
≂	Courant ou tension continu ou	Ф	Fusible
*	alternatif (.c.a. ou c.c.)	Л	Signal numérique
11)))	Test de continuité ou tonalité de l'avertisseur de continuité	() e	Service et entretien.
4	Tension potentiellement dangereuse	CAT II	Surtension de catégorie 2 CEI 61010 (installation ou mesure).
	Double isolation		Recycler
	Présence d'électricité statique. Des décharges d'électricité statique peuvent endommager les pièces	<u>A</u>	Ne pas mettre ce produit au rebut avec les déchets ménagers. Contacter Fluke ou un centre de recyclage qualifié pour sa mise au rebut.

Procédures de sécurité de l'instrument

Cette section décrit les éléments de la mémoire du multimètre et les procédures pour effacer son contenu.

Mémoire volatile

Le tableau 1-3 affiche la liste des éléments dans la mémoire volatile du multimètre.

Tableau 1-3. Espace mémoire volatile

Туре	Taille	Fonction
SDRAM	128 Mo	Résultats des mesures en protection externe, chaînes utilisateur, paramètres de configuration temporaires et nom d'hôte Ethernet.
SRAM	4 Mo	Résultats des mesures en protection interne et paramètres de configuration.

Pour effacer les deux éléments de la mémoire volatile cités dans le tableau 1-3 :

- 1. Appuyez sur MEMORY.
- 2. Sélectionnez la touche de fonction MANAGE MEMORY.
- 3. Sélectionnez la touche de fonction ERASE MEMORY.

Mémoire non-volatile

Le tableau 1-4 affiche la liste des éléments dans la mémoire non-volatile du multimètre.

Tableau 1-4. Espace mémoire non-volatile

Туре	Taille	Fonction
Flash	128 Mo	Stockage du programme d'application, chaîne utilisateur, données utilisateur, paramètres de l'interface utilisateur à distance.
Flash	4 Mo	Configuration du matériel FPGA, stockage du programme d'application, constantes d'étalonnage.

Pour effacer les 128 Mo de la mémoire non-volatile cités dans le tableau 1-4 :

- 1. Appuyez sur MEMORY.
- 2. Sélectionnez la touche de fonction MANAGE MEMORY.
- 3. Sélectionnez la touche de fonction ERASE MEMORY.

Ce processus n'efface que la partie de la mémoire accessible à l'utilisateur.

Remarque

L'élément de mémoire non-volatile de 4 Mo n'est pas utilisable ; il ne peut pas être supprimé par l'utilisateur.

Modules mémoire (8846A uniquement)

Le 8846A est muni d'un port USB sur la face avant pour brancher des modules de mémoire flash jusqu'à 2 gigaoctets pour configurer le multimètre et les résultats de mesure. Pour effacer le contenu d'un module mémoire branché au 8846A :

- 1. Appuyez sur (MEMORY).
- 2. Sélectionnez la touche de fonction MANAGE MEMORY.
- 3. Sélectionnez la touche de fonction ERASE USB MEMORY.

Accessoires

Le tableau 1-5 présente la liste des accessoires disponibles pour les 8845A et 8846A.

Tableau 1-5. Accessoires

Modèle/Réf. Fluke	Description
TL71	Jeu de cordons de mesure de première qualité
6303	Sondes Kelvin
6730	Jeu de cordons Kelvin avec pinces-crocodiles
5940	Jeu de pinces Kelvin
5143	Cordons à pinces brucelles SMD
6275	Jeu de sondes électroniques de précision
6344	Jeu de tests de multimètre numérique électronique de base
884X-Short	Court-circuit 4 fils
884X-Case	Boîtier en plastique noir

Tableau 1-5. Accessoires (suite)

Modèle/Réf. Fluke	Description
TL910	Jeu de sondes électronique de précision
TL80A	Jeu de tests de multimètre numérique électronique de base
TL2X4W-PT	Jeu de mesures de résistance à 2 x 4 fils
TL2X4W-TWZ	Brucelle de test SMD pour mesures ohmiques à 2 x 4 fils
6262-02	Adaptateur d'embout de sonde de mesure, pointe fine étendue
6263-02	Adaptateur d'embout de sonde de mesure, embout de sonde IC
803293	Fusible instantané 11 A, 1000 V, 406INX1.5IN, Buik
943121	Fusible instantané 440 A, 1000 V, 406X1.375, Buik
884X-RTD	Sonde de température RTD 100 ohms
Y8846	Kit de montage en bâti. Permet de monter le multimètre dans une baie standard de 19 pouces.
Y8021	Câble blindé IEEE 488 d'un mètre (39,4 pouces), avec jack et fiche à chaque extrémité.
Y8022	Câble blindé IEEE 488 de deux mètres (78,8 pouces), avec jack et fiche à chaque extrémité.
884X-USB	Adaptateur de câble USB à RS-232
RS43	Câble RS-232 blindé (2 mètres)
884X-ETH	Câble Ethernet
884X-512M	Mémoire 512 Mo (8846A uniquement)
884X-1G	Mémoire 1 Go (8846A uniquement)
FVF-SC5	Logiciel de base FlukeView Forms
FVF-UG	FlukeView Forms, mise à niveau – sans câble
FVF-SC4	FlukeView Forms étendu avec cordon USB
2132558	Etalonnage, traçable avec données
1259800	Etalonnage, traçable sans données
1256480	Etalonnage, traçable auprès de Z540 avec données
1258910	Etalonnage, traçable auprès de Z540 sans données
1256990	Etalonnage, accrédité
1024830	Contrat, garantie étendue
2426684	Contrat, étalonnage, traçable avec données
1028820	Contrat, étalonnage, traçable sans données
1259170	Contrat, étalonnage, traçable auprès de Z540 avec données
1258730	Contrat, étalonnage, traçable auprès de Z540 sans données
1259340	Contrat, étalonnage, accrédité
2441827	Contrat, étalonnage, laboratoire d'étalons primaires
1540600	Contrat, étalonnage, artefact

Caractéristiques générales

Alimentation

_	_			
	וםו	no	SIC	٦n

90 V à 110 V
108 V à 132 V
198 V à 242 V
216 V à 264 V
47 Hz à 440 Hz Mesurée automatiquement au démarrage
28 VA crête (moyenne de 12 watts)

Dimensions

Hauteur	88 mm (3,46 po)
Largeur	217 mm (8,56 po)
Profondeur	297 mm (11,7 po)
Poids	3,6 kg (8,0 lb)
Poids à l'expédition	5,0 kg (11,0 lb)

Afficheur

Affichage fluorescent sous vide, matriciel

Environnement

_	,	
Tem	nara	tı ıro

Fonctionnement	0 °C à 55 °C
Stockage	-40 °C à 70 °C
Préchauffage	1 heure pour les caractéristiques d'incertitude complète
Humidité relative (sans condensation)	
Fonctionnement	0 °C à 28 °C < 90 % 28 °C à 40 °C < 80 % 40 °C à 55 °C < 50 %
Stockage	-40 °C à 70 °C < 95 %
Altitude	
Fonctionnement	2000 mètres
Stockage	12 000 mètres
Chocs et vibrations	Compatible avec Mil-T-28800E Type III, classe 5

Sécurité

Conception conforme aux normes CEI 61010-1:2000-1, UL 61010-1A1, CAN/CSA-C22.2 No. 61010.1, CAT I 1000V/CAT II 600V.

CFM

Conception conforme à CEI 61326-1:2000-11 (CEM) quand l'appareil est utilisé avec des câbles de communication blindés. Ce multimètre a montré une susceptibité aux fréquences rayonnées supérieures à 1 V/m entre 250 et 450 MHz dans la gamme de $100~\mu$ A.

Déclenchement

Echantillons par déclenchement	1 à 50 000
Délai de déclenchement	0 s à 3600 s, par pas de 10 μs
Délai de déclenchement externe	< 1 ms
Instabilité de déclenchement externe	< 500 μs
Entrée de déclenchement	Niveaux TTL
Sortie de déclenchement	5 V maximum. (collecteur ouvert)

Mémoire

8845A	10 000 mesures, internes uniquement
8846A	10 000 mesures, mémoire interne et capacité jusqu'à 2 gigaoctets
	avec un module mémoire USB (vendu séparément. Voir
	« Accessoires ») à partir du port USB de la face avant

Fonctions mathématiques

Zéro, dBm, dB, MX+B, calcul de tendance, histogramme, statistiques (min/max/moyenne/écart typique) et test de limite

Electricité

Interfaces à distance

RS-232 (câble RS-232 à USB pour brancher le multimètre à un port USB du PC. Voir accessoires) IEEE 488.2 LAN

Garantie

Un an.

Caractéristiques électriques

Les caractéristiques de précision sont valides pour la résolution à 6½ chiffres après au moins 1 heure de préchauffage avec la fonction du zéro automatique activée.

Les caractéristiques de 24 heures sont relatives aux normes d'étalonnage et supposent un environnement électromagnétique contrôlé selon EN 61326-1:2000-11

Caractéristiques de tension continue

Entrée maximum	1000 V sur toutes les gammes
Taux d'élimination en mode commun	> 140 dB à 50 Hz ou 60 Hz \pm 0,1 % (déséquilibre 1 k $\Omega)$
Mode d'élimination normal	60 dB pour NPLC 1 ou plus avec filtre c.c. inactif et fréquence secteur \pm 0,1 % 100 dB pour NPLC 1 ou plus avec filtre c.c. et fréquence secteur \pm 0,1 %
Méthode de mesure	A/N à rampes multiples
Linéarité A/N	0,0002 % de la mesure + 0,0001 % de la gamme
Courant de polarisation d'entrée	< 30 pA à 25 °C
Fonctionnement avec zéro automatique inactif	Après le préchauffage de l'instrument à une température d'étalonnage de \pm 1 $^{\circ}C$ et inférieure à 10 minutes, ajouter l'erreur : 0,0002 % d'erreur de gamme supplémentaire de + 5 μV .
Considérations sur la stabilisation	Le temps de stabilisation des mesures est affecté par l'impédance de source, les caractéristiques diélectriques des câbles et les changements du signal d'entrée.

Caractéristiques d'entrée

Gamme	Pleine échelle	Résolution			Impédance d'entrée
Gainine	(6½ chiffres)	4½ chiffres	5½ chiffres	6½ chiffres	impedance d entree
100 mV	100,0000 mV	10 μV	1 μV	100 nV	10 M Ω ou > 10 G Ω ^[1]
1 V	1,000000 V	100 μV	10 μV	1 μV	10 M Ω ou > 10 G Ω ^[1]
10 V	10,00000 V	1 mV	100 μV	10 μV	10 M Ω ou > 10 G Ω ^[1]
100 V	100,0000 V	10 mV	1 mV	100 μV	10 M Ω \pm 1 %
1000 V	1.000,000 V	100 mV	10 mV	1 mV	10 M Ω \pm 1 %
[1] Les entrées au-delà de \pm 14 V sont nivelées jusqu'à 200 k Ω , normal. 10 M Ω est l'impédance d'entrée par défaut.					

Précision du 8846A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 mV	0,0025 + 0,003	0,0025 + 0,0035	0,0037 + 0,0035	0,0005 + 0,0005
1 V	0,0018 + 0,0006	0,0018 + 0,0007	0,0025 + 0,0007	0,0005 + 0,0001
10 V	0,0013 + 0,0004	0,0018 + 0,0005	0,0024 + 0,0005	0,0005 + 0,0001
100 V	0,0018 + 0,0006	0,0027 + 0,0006	0,0038 + 0,0006	0,0005 + 0,0001
1000 V	0,0018 + 0,0006	0,0031 + 0,001	0,0041 + 0,001	0,0005 + 0,0001

Précision du 8845A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 mV	0,003 + 0,003	0,004 + 0,0035	0,005 + 0,0035	0,0005 + 0,0005
1 V	0,002 + 0,0006	0,003 + 0,0007	0,004 + 0,0007	0,0005 + 0,0001
10 V	0,0015 + 0,0004	0,002 + 0,0005	0,0035 + 0,0005	0,0005 + 0,0001
100 V	0,002 + 0,0006	0,0035 + 0,0006	0,0045 + 0,0006	0,0005 + 0,0001
1000 V	0,002 + 0,0006	0,0035 + 0,0010	0,0045 + 0,0010	0,0005 + 0,0001

Erreurs supplémentaires

Chiffres	NPLC	Erreurs de bruit supplémentaire
6½	100	0 % de la gamme
6½	10	0 % de la gamme
5½	1	0,001 % de la gamme
5½	0,2	0,001 % de la gamme +20 μV
4½	0,02	0,01 % de la gamme +20 μV

Caractéristiques de tension alternative

Les caractéristiques de tension alternative sont liées aux signaux sinusoïdaux c.a. > 5 % de la gamme. Pour les entrées entre 1 % et 5 % de la gamme et < 50 kHz, ajouter une erreur supplémentaire de 0,1 % de la gamme, et entre 50 et 100 kHz, ajouter 0,13 % de la gamme.

Entrée maximum	.750 V eff. ou 1000 V crête (8845A), 1000 V eff. ou 1414 V crête (8846A) ou produit de 8 x 10^7 volts-hertz (selon la valeur la moins grande) pour toute gamme.
Méthode de mesure	Mesure efficace vraie à couplage alternatif Mesure le composant c.a. de l'entrée avec une polarisation jusqu'à 1000 V c.c. sur toutes les gammes.
Bande passante du filtre en courant alternatif :	
Lent	. 3 Hz à 300 kHz
Intermédiaire	. 20 Hz à 300 kHz
Rapide	. 200 Hz à 300 kHz
Taux d'élimination en mode commun	. 70 dB à 50 Hz ou 60 Hz \pm 0,1 % (déséquilibre 1 k Ω)
Facteur de crête maximum	. 5:1 à pleine échelle
Erreurs de facteur de crête supplémentaires	
(< 100 Hz)	Facteur de crête 1 à 2, 0,05 % de la pleine échelle Facteur d'échelle 2 à 3, 0,2 % de la pleine échelle Facteur d'échelle 3 à 4, 0,4 % de la pleine échelle

1-11

Facteur d'échelle 4 à 5, 0,5 % de la pleine échelle

Caractéristiques d'entrée

Commo	Pleine échelle	Résolution			Impédance d'antrée
Gamme	(6½ chiffres)	4½ chiffres	5½ chiffres	61/2 chiffres	Impédance d'entrée
100 mV	100,0000 mV	10 μV	1 μV	100 nV	
1 V	1,000000 V	100 μV	10 μV	1 μV	4 MO + 0 0/ about
10 V	10,00000 V	1 mV	100 μV	10 μV	1 M Ω ± 2 % shunté par < 100 pf
100 V	100,0000 V	10 mV	1 mV	100 μV	
1000 V	1.000,000 V	100 mV	10 mV	1 mV	

Précision du 8846A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	Fréquence	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C				
100 mV	3 à 5 Hz	1,0 + 0,03	1,0 + 0,04	1,0 + 0,04	0,1 + 0,004				
	5 à 10 Hz	0,35 + 0,03	0,35 + 0,04	0,35 + 0,04	0,035 + 0,004				
	10 Hz à 20 kHz	0,04 + 0,03	0,05 + 0,04	0,06 + 0,04	0,005 + 0,004				
	20 à 50 kHz	0,1 + 0,05	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005				
	50 à 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008				
	100 à 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,20 + 0,02				
1 V	3 à 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003				
	5 à 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003				
	10 Hz à 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003				
	20 à 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005				
	50 à 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008				
	100 à 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02				
10 V	3 à 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003				
	5 à 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003				
	10 Hz à 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003				
	20 à 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005				
	50 à 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008				
	100 à 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02				
100 V	3 à 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003				
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003				
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003				
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005				
	50 – 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008				
	100 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02				
1000 V	3 – 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003				
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003				
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003				
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005				
	50 – 100 kHz ^[2]	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008				
100 – 300 kHz ^{[1][2]} 4,0 + 0,5 4,0 + 0,50 4,0 + 0,50 0,2 + 0,02									

^[2] La gamme de 1000 volts est limitée à 8 X 107 volt-hertz

Précision du 8845A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	Fréquence (Hz)	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 mV	3 – 5 Hz	1,0 + 0,03	1,0 + 0,04	1,0 + 0,04	0,10 + 0,004
	5 – 10 Hz	0,35 + 0,03	0,35 + 0,04	0,35 + 0,04	0,035 + 0,004
	10 Hz – 20 kHz	0,04 + 0,03	0,05 + 0,04	0,06 + 0,04	0,005 + 0,004
	20 – 50 kHz	0,1 + 0,05	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005
	50 – 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008
	100 – 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02
1 V	3 – 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005
	50 – 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008
	100 – 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02
10 V	3 – 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005
	50 – 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008
	100 – 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02
100 V	3 – 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005
	50 – 100 kHz	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008
	100 – 300 kHz ^[1]	4,0 + 0,50	4,0 + 0,50	4,0 + 0,50	0,2 + 0,02
750 V	3 5 Hz	1,0 + 0,02	1,0 + 0,03	1,0 + 0,03	0,1 + 0,003
	5 – 10 Hz	0,35 + 0,02	0,35 + 0,03	0,35 + 0,03	0,035 + 0,003
	10 Hz – 20 kHz	0,04 + 0,02	0,05 + 0,03	0,06 + 0,03	0,005 + 0,003
	20 – 50 kHz	0,1 + 0,04	0,11 + 0,05	0,12 + 0,05	0,011 + 0,005
	50 – 100 kHz ^[2]	0,55 + 0,08	0,6 + 0,08	0,6 + 0,08	0,06 + 0,008
	100 – 300 kHz ^{[1] [2]}	4,0 + 0,5	4,0 + 0,5	4,0 + 0,5	0,2 + 0,02
[1] Erreu	de lecture normale de 3	0 % à 1 MHz			

^[2] La gamme de 750 volts est limitée à 8 X 107 volt-hertz

Erreurs de basse fréquence supplémentaires

L'erreur est déclarée sous la forme d'un % de lecture.

	Filtre en courant alternatif				
Fréquence	3 HZ (lent)	20 HZ (intermédiaire)	200 HZ (rapide)		
10 à 20 Hz	0	0,25	_		
20 à 40 Hz	0	0,02	1		
40 à 100 Hz	0	0,01	0,55		
100 à 200 Hz	0	0	0,2		
200 Hz à 1 kHz	0	0	0,02		
> 1 kHz	0	0	0		

Résistance

Les caractéristiques sont liées à la fonction de mesure de résistance à 4 fils, de résistance à 2 x 4 fils ou de résistances à 2 fils avec zéro. Si le zéro n'est pas utilisé, ajouter $0,2~\Omega$ pour la résistance à 2 fils plus la résistance du cordon, et ajouter $20~\text{m}\Omega$ pour la mesure de résistance à 2~x 4 fils.

Résistance de cordon max.

par cordon sur toutes les autres gammes.

Caractéristiques d'entrée

Commo	Pleine échelle		Résolution			
Gamme	(6½ chiffres)	4½ chiffres	5½ chiffres	6½ chiffres	Courant de source	
10 $\Omega^{[1]}$	10,00000 Ω	1 mΩ	100 μΩ	10 μΩ	5 mA	
100 Ω	100,0000 Ω	10 m $Ω$	1 mΩ	100 μΩ	1 mA	
1 kΩ	1,000000 kΩ	100 mΩ	10 mΩ	1 mΩ	1 mA	
10 kΩ	10,00000 kΩ	1 Ω	100 mΩ	10 mΩ	100 μΑ	
100 kΩ	100,0000 kΩ	10 Ω	1 Ω	100 mΩ	10 μΑ	
1 ΜΩ	1,000000 M Ω	100 Ω	10 Ω	1 Ω	10 μΑ	
10 MΩ	10,00000 M Ω	1 kΩ	100 Ω	10 Ω	1 μΑ	
100 MΩ	100,0000 M Ω	10 kΩ	1 kΩ	100 Ω	1 μΑ 10 ΜΩ	
1,0 $G\Omega^{[1]}$	1,000000 G Ω	100 kΩ	10 kΩ	1 kΩ	1 μΑ 10 ΜΩ	
[1] 8846	uniquement	_	_	_		

Précision du 8846A

La précision est donnée sous la forme ± (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
10 Ω	0,003 + 0,01	0,008 + 0,03	0,01+ 0,03	0,0006 + 0,0005
100 Ω	0,003 + 0,003	0,008 + 0,004	0,01 + 0,004	0,0006 + 0,0005
1 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
10 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
100 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
1 ΜΩ	0,002 + 0,001	0,008 + 0,001	0,01 + 0,001	0,001 + 0,0002
10 MΩ	0,015 + 0,001	0,02 + 0,001	0,04 + 0,001	0,003 + 0,0004
100 MΩ	0,3 + 0,01	0,8 + 0,01	0,8 + 0,01	0,15 + 0,0002
1 GΩ	1,0 + 0,01	1,5 + 0,01	2,0 + 0,01	0,6 + 0,0002

Précision du 8845A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 Ω	0,003 + 0,003	0,008 + 0,004	0,01 + 0,004	0,0006 + 0,0005
1 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
10 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
100 kΩ	0,002 + 0,0005	0,008 + 0,001	0,01 + 0,001	0,0006 + 0,0001
1 ΜΩ	0,002 + 0,001	0,008 + 0,001	0,01 + 0,001	0,0010 + 0,0002
10 MΩ	0,015 + 0,001	0,02 + 0,001	0,04 + 0,001	0,0030 + 0,0004
100 MΩ	0,3 + 0,01	0,8 + 0,01	0,8 + 0,01	0,1500 + 0,0002

Erreurs ohmiques supplémentaires

Chiffres	NPLC	Erreurs de bruit supplémentaire
6½	100	0 % de la gamme
6½	10	0 % de la gamme
5½	1	0,001 % de la gamme
5½	0,2	0,001 % de gamme \pm 20 m Ω
4½	0,02	0,01 % de gamme \pm 20 m Ω

Courant continu

Protection d'entrée Fusibles de 11 A/1000 V et 440 mA/1000 V accessibles par outil.

Caractéristiques d'entrée

Gamme	Pleine échelle		Résolution		Résistance de	Tension de
Gaiiiiie	(6½ chiffres)	4½ chiffres	5½ chiffres	6½ chiffres	shunt (ohms)	charge
100 μΑ	100,0000 μΑ	10 nA	1 nA	100 pA	100 Ω	< 0,015
1 mA	1,000000 mA	100 nA	10 nA	1 nA	100 Ω	< 0,15
10 mA	10,00000 mA	1 μΑ	100 nA	10 nA	1 Ω	< 0,025 V
100 mA	100,0000 mA	10 μΑ	1 μΑ	100 nA	1 Ω	< 0,25 V
1 A	1,000000 A	100 μΑ	10 μΑ	1 μΑ	0,01 Ω	< 0,05 V
3 A ^[1]	3,00000A	1 mA	100 μΑ	10 μΑ	0,01 Ω	< 0,15 V
10 A	10,00000 A	1 mA	100 μΑ	10 μΑ	0,01 Ω	< 0,5 V
[1] Appartier	nt à la gamme 10 A.	•				•

Précision (8846A)

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 μΑ	0,01 + 0,02	0,04 + 0,025	0,05 + 0,025	0,002 + 0,003
1 mA	0,007 + 0,005	0,030 + 0,005	0,05 + 0,005	0,002 + 0,0005
10 mA	0,007 + 0,02	0,03 + 0,02	0,05 + 0,02	0,002 + 0,002
100 mA	0,01 + 0,004	0,03 + 0,005	0,05 + 0,005	0,002 + 0,0005
1 A ^[2]	0,03 + 0,02	0,04 + 0,02	0,05 + 0,02	0,005 + 0,001
3 A ^{[1][2]}	0,05 + 0,02	0,08 + 0,02	0,1 + 0,02	0,005 + 0,002
10 A ^[2]	0,1 + 0,008	0,12 + 0,008	0,15 + 0,008	0,005 + 0,0008
F43 A	3.1	•		•

^[1] Appartient à la gamme 10 A.

Précision (8845A)

La précision est donnée sous la forme ± (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 μΑ	0,01 + 0,02	0,04 + 0,025	0,05 + 0,025	0,002 + 0,003
1 mA	0,007 + 0,005	0,030 + 0,005	0,05 + 0,005	0,002 + 0,0005
10 mA	0,007 + 0,02	0,03 + 0,02	0,05 + 0,02	0,002 + 0,002
100 mA	0,01 + 0,004	0,03 + 0,005	0,05 + 0,005	0,002 + 0,0005
1 A ^[2]	0,03 + 0,04	0,08 + 0,02	0,05 + 0,02	0,005 + 0,001
3 A ^{[1][2]}	0,05 + 0,08	0,12 + 0,02	0,1 + 0,02	0,005 + 0,002
10 A ^[2]	0,1 + 0,008	0,12 + 0,008	0,15 + 0,02	0,005 + 0,0008

^[1] Appartient à la gamme 10 A.

Erreurs de courant supplémentaires

Chiffres	NPLC	Erreurs de bruit supplémentaire
6½	100	0 % de la gamme
6½	10	0 % de la gamme
5½	1	0,001 % de la gamme
5½	0,2	0,001 % de gamme \pm 4 μ A
4½	0,02	0,01 % de gamme ± 4 μA

^[2] Accessible unquement au niveau des connecteurs de la face avant.

^[2] Accessible unquement au niveau des connecteurs de la face avant.

Courant alternatif

Les caractéristiques de courant alternatif suivantes sont liées aux signals sinusoïdaux ayant des amplitudes supérieures à 5 % de la gamme. Pour les entrées de 1 % à 5 % de la gamme, ajouter une erreur supplémentaire de 0,1 % de la gamme.

et shunt (sans condensateur de blocage)

Bande passante du filtre en courant alternatif

 Lent
 3 Hz à 10 kHz

 Intermédiaire
 20 Hz à 10 kHz

 Rapide
 200 Hz à 10 kHz

 Facteur de crête maximum
 5:1 à pleine échelle

Erreurs de facteur de crête supplémentaire

(< 100 Hz) Facteur de crête 1 à 2, 0,05 % de la pleine échelle

Facteur d'échelle 2 à 3, 0,2 % de la pleine échelle Facteur d'échelle 3 à 4, 0,4 % de la pleine échelle Facteur d'échelle 4 à 5, 0,5 % de la pleine échelle

Caractéristiques d'entrée

Gamme	Pleine échelle		Résolution		Résistance de	Tension de charge	
Gaiiiiie	(6½ chiffres)	4½ chiffres	5½ chiffres	6½ chiffres	shunt (ohms)	rension de charge	
100 μA ^[1]	100,0000 μΑ	10 nA	1 nA	100 pA	100 Ω	< 0,015 V	
1 mA ^[1]	1,000000 mA	100 nA	10 nA	1 nA	100 Ω	< 0,15 V	
10 mA	10,00000 mA	1 μΑ	100 nA	10 nA	1 Ω	< 0,025 V	
100 mA	100,0000 mA	10 μΑ	1 μΑ	100 nA	1 Ω	< 0,25 V	
1 A	1,000000 A	100 μΑ	10 μΑ	1 μΑ	0,01 Ω	< 0,05 V	
3 A ^[2]	3,00000 A	1 mA	100 μΑ	10 μΑ	0,01 Ω	< 0,05 V	
10 A	10,00000 A	1 mA	100 μΑ	10 μΑ	0,01 Ω	< 0,5 V	

^{[1] 8846}A uniquement

Précision du 8846A

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	Fréquence (Hz)	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
100 μΑ	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz - 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
1 mA	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
10 mA	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1+ 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
100 mA	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
1 A[2]	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006

^[2] Appartient à la gamme 10 A

Précision du 8846A (suite)

3 A ^{[1][2]}	3 à 5 Hz	1,1 + 0,06	1,1 + 0,06	1,1 + 0,06	0,1 + 0,006
	5 – 10 Hz	0,35 + 0,06	0,35 + 0,06	0,35 + 0,06	0,035 + 0,006
	10 Hz – 5 kHz	0,5 + 0,7	0,15 + 0,06	0,15 + 0,06	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006
10 A ^[2]	3 – 5 Hz	2,0 + 0,06	2,0 + 0,06	2,0 + 0,06	0,2 + 0,006
	5 – 10 Hz	1,1 + 0,06	1,1 + 0,06	1,1 + 0,06	0,1 + 0,006
	10 Hz – 5 kHz	0,15 + 0,06	0,15 + 0,06	0,15 + 0,06	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006
541 A	.1.3.1	•	<u> </u>	•	·

^[1] Appartient à la gamme 10 A.

Précision du 8845A

La précision est donnée sous la forme ± (% de mesure + % de la gamme)

Gamme	Fréquence (Hz)	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
10 mA	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1+ 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
100 mA	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,2 + 0,25	0,2 + 0,25	0,2 + 0,25	0,03 + 0,006
1 A ^[2]	3 – 5 Hz	1,0 + 0,04	1,0 + 0,04	1,0 + 0,04	0,1 + 0,006
	5 – 10 Hz	0,3 + 0,04	0,3 + 0,04	0,3 + 0,04	0,035 + 0,006
	10 Hz – 5 kHz	0,1 + 0,04	0,1 + 0,04	0,1 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006
3 A ^{[1][2]}	3 – 5 Hz	1,1 + 0,06	1,1 + 0,06	1,1 + 0,06	0,1 + 0,006
	5 – 10 Hz	0,35 + 0,06	0,35 + 0,06	0,35 + 0,06	0,035 + 0,006
	10 Hz – 5 kHz	0,15 + 0,06	0,15 + 0,06	0,15 + 0,06	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006
10 A ^[2]	3 – 5 Hz	1,1 + 0,04	1,1 + 0,04	1,1 + 0,04	0,2 + 0,006
	5 – 10 Hz	0,35 + 0,04	0,35 + 0,04	0,35 + 0,04	0,1 + 0,006
	10 Hz – 5 kHz	0,15 + 0,04	0,15 + 0,04	0,15 + 0,04	0,015 + 0,006
	5 – 10 kHz	0,35 + 0,7	0,35 + 0,7	0,35 + 0,7	0,03 + 0,006
[1] Appartie	ent à la gamme 10 A.	•			

^[2] Accessible uniquement au niveau des connecteurs de la face avant.

Erreurs de basse fréquence supplémentaires

L'erreur est déclarée sous la forme d'un % de lecture.

	Fil	Filtre en courant alternatif				
Fréquence	3 HZ (lent)	20 HZ (intermédiaire)	200 HZ (rapide)			
10 à 20 Hz	0	0,25	_			
20 à 40 Hz	0	0,02	_			
40 à 100 Hz	0	0,01	0,55			
100 à 200 Hz	0	0	0,2			
200 Hz à 1 kHz	0	0	0,02			
> 1 kHz	0	0	0			

^[2] Accessible unquement au niveau des connecteurs de la face avant.

Fréquence

Temps de propagation	. Programmable à 1 s, 100 ms et 10 ms.
Méthode de mesure	. Technique de décompte flexible. Entrée à couplage alternatif utilisant la fonction de mesure de tension alternative.
Considérations sur la stabilisation	Lors des mesures de fréquence ou de période, des erreurs risquent de survenir après une modification d'une tension de décalage c.c. Pour une mesure très précise, attendre 1 seconde pendant la stabilisation du condensateur de blocage d'entrée.
Considérations sur les mesures	. Pour réduire les erreurs de mesure, protéger les entrées blindées du bruit externe en mesurant des signaux à basse fréquence et à basse tension.

Précision du 8846A

La précision est donnée sous la forme \pm % de mesure

Gamme	Fréquence	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C		
100 mV à	3 à 5 Hz	0,1	0,1	0,1	0,005		
1000 V ^{[1][2]}	5 à 10 Hz	0,05	0,05	0,05	0,005		
	10 à 40 Hz	0,03	0,03	0,03	0,001		
	40 Hz à 300 kHz	0,006	0,01	0,01	0,001		
	300 kHz à 1 MHz	0,006	0,01	0,01	0,001		
[1] Entrée > 100 mV. Pour 10 à 100 mV, multiplier le pourcentage d'erreur de mesure par 10.							
[2] Limitée	à 8 X 107 volt-hertz	[2] Limitée à 8 X 107 volt-hertz					

Précision du 8845A

La précision est donnée sous la forme \pm % de mesure

Gamme	Fréquence	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Compensation de température/ °C en dehors de 18 à 28 °C
100 mV à	3 à 5 Hz	0,1	0,1	0,1	0,005
750 V ^{[1][2]}	5 à 10 Hz	0,05	0,05	0,05	0,005
	10 à 40 Hz	0,03	0,03	0,03	0,001
	40 Hz à 300 kHz	0,006	0,01	0,01	0,001
[1] Entrée > 100 mV. Pour 10 à 100 mV, multiplier le pourcentage d'erreur de mesure par 10.					
[2] Limitée à 8 X 107 volt-hertz					

Temps de propagation et résolution

Temps de propagation	Résolution
0,01	5½
0,1	6½
1,0	6½

Erreurs de basse fréquence supplémentaires

Erreur déclarée sous la forme d'un pourcentage de mesure pour les entrées > 100 mV. Pour 10 à 100 mV, multiplier le pourcentage par 10.

Eráguanas	Résolution				
Fréquence	6½	5½	4½		
3 à 5 Hz	0	0,12	0,12		
5 à 10 Hz	0	0,17	0,17		
10 à 40 Hz	0	0,2	0,2		
40 à 100 Hz	0	0,06	0,21		
100 à 300 Hz	0	0,03	0,21		
300 Hz à 1 kHz	0	0,01	0,07		
> 1 kHz	0	0	0,02		

Capacité (8846A uniquement)

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	Résolution	Précision sur 1 an ^[1] (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C			
1 nF	1 pF	2 % ± 2,5 %	0,05 + 0,05			
10 nF	10 pF	1 % ± 0,5 %	0,05 + 0,01			
100 nF	100 pF	1 % ± 0,5 %	0,01 + 0,01			
1 μF	1 nF	1 % ± 0,5 %	0,01 + 0,01			
10 μF	10 nF	1 % ± 0,5 %	0,01 + 0,01			
100 μF	100 nF	1 % ± 0,5 %	0,01 + 0,01			
1 mF	1 μF	1 % ± 0,5 %	0,01 + 0,01			
10 mF	10 μF	1 % ± 0,5 %	0,01 + 0,01			
100 mF	100 μF	4 % ± 0,2 %	0,05 + 0,05			
[1] La précision déclarée est atteinte lorsque la fonction Zéro est utilisée.						

Température (8846A uniquement)

Courant de test...... 1 mA

La précision est déclarée sous la forme \pm °C et repose sur une sonde RTD RT100 en platine (DIN 43760) avec une résistance de cordon inférieure à 10 ohms. Ces caractéristiques n'incluent pas la précision de la sonde qui doivent être ajoutées.

		Précision		Coefficient de température/	
Gamme	Résolution	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	°C en dehors de 18 à 28 °C	
-200 °C	0,001 °C	0,06	0,09	0,0025	
-100 °C	0,001 °C	0,05	0,08	0,002	
0 °C	0,001 °C	0,04	0,06	0,002	
100 °C	0,001 °C	0,05	0,08	0,002	
300 °C	0,001 °C	0,1	0,12	0,002	
600 °C	0,001 °C	0,12	0,14	0,002	

Erreurs de température supplémentaires

NPLC	Erreurs de bruit supplémentaire	
100	0 °C	
10	0 °C	
1	0,03 °C	
0,2	0,1 °C	
0,02	0,4 °C	

Continuité

Seuil de continuité Commutable entre 1 Ω et 1000 Ω

Courant de test...... 1 mA

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
1000,0 Ω	0,002 + 0,01	0,008 + 0,02	0,01 + 0,02	0,001 + 0,002

Contrôle de diode

La précision est donnée sous la forme \pm (% de mesure + % de la gamme)

	Gamme	24 heures (23 ± 1 °C)	90 jours (23 ± 5 °C)	1 an (23 ± 5 °C)	Coefficient de température/ °C en dehors de 18 à 28 °C
5	5,0000 V	0,002 + 0,002	0,008 + 0,002	0,01 + 0,002	0,001 + 0,002
1	10,0000 V	0,002 + 0,001	0,008 + 0,002	0,01 + 0,002	0,001 + 0,002

Taux de mesure

Fonction	Chiffres Réglage	Durée d'intégration 60 Hz (50 Hz)	Mesures/seconde ^[1]		
Foliction			8845A	8846A	
Volts c.c., courant c.c.	6½	100 NPLC	1,67 (2) s	0,6 (0,5)	0,6 (0,5)
et résistance	6½	10 NPLC	167 (200) ms	6 (5)	6 (5)
	5½	10 NPLC	16,7 (20) ms	60 (50)	60 (50)
	5½	0,2 NPLC	3 ms	300	300
Tension c.a. et courant c.a.[2]	6½	3 Hz		0,14	0,14
	6½	20 Hz		1	1
	6½	200 Hz ^[3]		1,6	1,6
	6½	200 Hz ^[4]		6	6
Fréquence et période	6½	1 s		1	1
	5½	100 ms		9,8	9,8
	41/2	10 ms		80	80

^[1] Taux de mesure typiques avec zéro automatique inactif.

^[2] Vitesses de mesure maximum par pas de 0,01 % c.a. Un délai de stabilsation supplémentaire est nécessaire lorsque l'entrée c.c. varie.

^[3] Pour un fonctionnement à distance ou un déclenchement externe en utilisant le délai de stabilisation par défaut.

^[4] Délai de stabilisation = 0

Chapitre 2 Préparation de l'instrument avant son utilisation

Titre	Page
Introduction	2-3
Déballage et inspection du multimètre	2-3
Pour contacter Fluke	
Stockage et expédition du multimètre	
Remarques sur l'alimentation	
Sélection de la tension secteur	
Changement des fusibles	2-4
Fusible d'alimentation secteur	
Fusibles d'entrée de courant	2-5
Raccordement à l'alimentation secteur	2-7
Mise sous tension	2-8
Réglage de la béquille	
Installation de l'instrument dans une baie d'équipement	
Nettoyage du multimètre	

8845A/8846A

Mode d'emploi

Introduction

Ce chapitre explique comment préparer l'utilisation du multimètre en sélectionnant la tension secteur appropriée, en branchant le cordon d'alimentation approprié et en mettant sous tension le multimètre. Il inclut également des informations sur le stockage et le nettoyage du multimètre.

Déballage et inspection du multimètre

Les matériaux de calage ont été soigneusement choisis pour que l'équipement vous parvienne dans les meilleures conditions. Si l'équipement a été soumis à une manipulation abusive lors du transport, le carton d'emballage en porte probablement les traces. En cas d'endommagement, la caisse d'expédition et les garnitures de calage doivent être conservés pour l'inspection par le transporteur.

Déballez soigneusement le multimètre de sa caisse d'expédition et inspectez le contenu pour identifier les éléments manquants ou endommagés. Si le multimètre est endommagé ou si des articles manquent, adressez-vous immédiatement au transporteur et à Fluke. Conservez la caisse et le matériau d'emballage en vue d'un renvoi éventuel du multimètre.

Pour contacter Fluke

Pour commander des accessoires, obtenir une assistance technique ou connaître l'adresse du distributeur ou centre de service Fluke le plus proche, composez l'un des numéros suivants :

Etats-Unis: 1-888-44-FLUKE (1-888-443-5853) Canada: 1-800-36-FLUKE (1-800-363-5853)

Europe: +31 402-675-200 Japon: +81-3-3434-0181 Singapour: +65-738-5655 Dans les autres pays: +1-425-446-5500

Service aux Etats-Unis: 1-888-99-FLUKE (1-888-993-5853)

Ou visitez notre site Web: www.fluke.com.

Pour enregistrer cet appareil, visitez register.fluke.com.

Stockage et expédition du multimètre

Le multimètre doit être entreposé dans un conteneur fermé. La caisse d'expédition est la mieux adaptée pour entreposer l'instrument car elle assure une protection anti-choc nécessaire lors des opérations de manutention normales.

Placez le multimètre dans un sac étanche. Placez le sac dans le matériau de calage à l'intérieur de la caisse d'expédition, et rangez-le dans un endroit répondant à la caractéristique d'environnement de stockage décrite dans le chapitre 1.

Conservez la caisse d'origine en vue d'une expédition éventuelle du multimètre. Elle assure une isolation anti-choc lors des opérations de manutention normales. Si la caisse d'origine n'est plus disponible, une caisse de 45 x 40 x 20 cm, bourrée de matériau de calage pour remplir l'espace entre le multimètre et les bords de la caisse, doit assurer une isolation anti-choc similaire.

Remarques sur l'alimentation

Le multimètre répond aux normes de distribution d'électricité du monde entier ; il doit être configuré pour utiliser la tension d'alimentation secteur. Le multimètre est livré prêt à l'emploi, avec une tension secteur déterminée lors de la commande. Si la tension secteur sélectionnée ne correspond pas à l'alimentation prévue pour le multimètre, modifiez la tension secteur définie sur le multimètre et remplacez éventuellement le fusible secteur.

Sélection de la tension secteur

Le multimètre fonctionne sur l'une des quatre tensions d'entrée secteur. La tension secteur est indiquée dans la fenêtre du porte-fusible secteur qui se trouve sur la face arrière du multimètre.

Pour changer de tension secteur :

- 1. Retirez le cordon d'alimentation du multimètre.
- 2. Insérez la lame d'un petit tournevis dans la dépression étroite à gauche du portefusible et poussez vers la droite pour ouvrir le porte-fusible conformément à la figure 2-1.
- 3. Retirez le bloc de sélection de tension du porte-fusible.
- 4. Faites pivoter le bloc de sélection de façon à orienter la tension nominale souhaitée vers l'extérieur.
- 5. Replacez le bloc de sélection dans le porte-fusible.

Le changement de la tension secteur exige parfois d'installer un fusible d'alimentation secteur différent pour le bon fonctionnement du multimètre. Vérifiez le tableau 2-1 pour identifier le fusible approprié à la tension secteur sélectionnée.

Une fois la tension définie et le fusible approprié installé, replacez le porte-fusible dans le multimètre et rebranchez le cordon d'alimentation.

Changement des fusibles

Le multimètre utilise des fusibles pour protéger les entrées de mesure du courant et de l'alimentation secteur.

Fusible d'alimentation secteur

Le multimètre possède un fusible d'alimentation en série avec la source d'alimentation. Le tableau 2-1 indique le fusible approprié pour chacune des quatre tensions secteur sélectionnables. Ce fusible est situé sur le panneau arrière.

Pour remplacer ce fusible :

- 1. Débranchez le cordon d'alimentation du multimètre.
- 2. Retirez le porte-fusible en introduisant la lame d'un petit tournevis dans l'étroite dépression et soulevez vers la droite de façon à extraire le porte-fusible conformément à la figure 2-1. Le multimètre est livré avec un fusible de rechange du même calibre que le fusible installé dans le bloc à fusible.
- 3. Retirez le fusible et installez un fusible de calibre approprié pour la tension d'alimentation secteur sélectionnée. Voir Tableau 2-1.
- 4. Replacez le bloc de sélection dans le porte-fusible.

∧ ∧ Avertissement

Pour éviter les risques d'incendie ou d'électrocution, ne pas utiliser de fusibles improvisés ni mettre en court-circuit le porte-fusibles. N'utiliser que des fusibles Fluke

Sélection de la tension secteur	Calibre de fusible	Référence Fluke
100	0,25 A, 250 V (fusion temporisée)	166306
120	0,25 A, 250 V (fusion temporisée)	166306
220	0,125 A, 250 V (fusion temporisée)	166488
240	0,125 A, 250 V (fusion temporisée)	166488

Tableau 2-1. Tension secteur et calibre de fusible

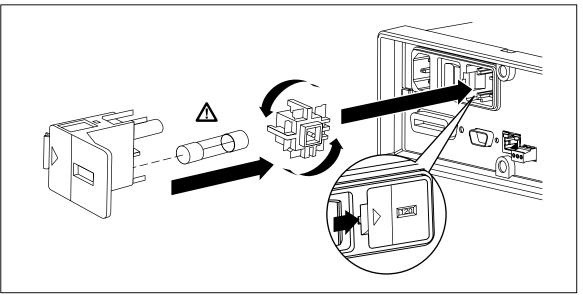


Figure 2-1. Remplacement du fusible secteur

caw0201f.eps

Fusibles d'entrée de courant

Les entrées de 100 mA et 10 A sont protégées par des fusibles remplaçables.

- L'entrée de 100 mA est protégée par un fusible (F2) homologué à 440 mA, 1000 V (fusion rapide), une capacité de rupture minimum de 10 000 A (Fluke Réf. 943121).
- L'entrée de 10 A est protégée par un fusible (F1) homologué à 11 A, 1000 V (fusion rapide), une capacité de rupture minimum de 10 000 A (Fluke Réf. 803293).

∧ Avertissement

Pour la protection contre l'incendie et les éclairs d'arc, installer uniquement un fusible neuf fourni par Fluke.

Pour tester la présence d'un fusible d'entrée de courant grillé :

- 1. Après avoir mis le multimètre sous tension, branchez un cordon de mesure dans le connecteur $\mathbf{V}\Omega \rightarrow \mathbf{L}(\mathbf{u})$.
- 2. Appuyez sur Ω .
- 3. Introduisez l'autre extrémité du cordon de mesure dans le connecteur d'entrée 100 mA.

Si le fusible est bon, le multimètre indique une valeur inférieure à 200 Ω . Si le fusible est grillé, le multimètre indique over load.

4. Retirez la sonde du connecteur 100 mA et introduisez-le dans le connecteur 10 A.

Si le fusible est bon, le multimètre indique une valeur inférieure à 1 Ω . Si le fusible est grillé, le multimètre indique over load.

Pour remplacer les fusibles d'entrée de courant :

- 1. Mettez le multimètre hors tension, débranchez le cordon d'alimentation du multimètre et retirez tous les cordons de mesure.
- 2. Posez le multimètre sur le dos.
- 3. Dévissez la vis de fixation de la trappe d'accès au fusible conformément à la figure 2-2.
- 4. Retirez le capot de protection des porte-fusibles en appuyant légèrement sur le bord arrière du capot pour le détacher de la carte de circuits imprimés. Tirez sur le bord noir du capot et retirez le capot du compartiment.
- 5. Retirez le fusible défectueux et remplacez-le par un fusible de calibre approprié.
- 6. Replacez le capot de protection contre les fusibles, tout en alignant les cliquets avec les trous de carte de circuits imprimés. Pressez sur le capot de façon à engager les cliquets avec la carte de circuits imprimés.
- 7. Replacez la porte du compartiment à fusibles et fixez-la en resserrant la vis.

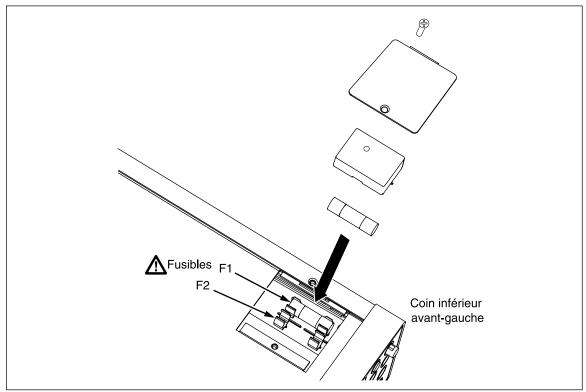


Figure 2-2. Remplacement des fusibles d'entrée de courant

cay020.eps

Raccordement à l'alimentation secteur

△ △ Avertissement

Pour éviter tout danger d'électrocution, brancher le cordon d'alimentation à trois conducteurs (fournis) dans une prise de courant correctement mise à la terre. Pour ne pas interrompre la protection à la terre, n'utiliser ni adaptateur à deux fils ni rallonge. Si un cordon d'alimentation à deux conducteurs doit être utilisé, relier un fil de protection à la terre entre la borne de terre et la prise de terre avant de brancher le cordon ou d'utiliser l'instrument.

Vérifiez d'abord la position du sélecteur de tension secteur puis confirmez que le fusible installé correspond à la tension secteur. Branchez le multimètre à une prise à trois broches correctement mise à la terre.

Tableau 2-2. Types de cordons secteur disponibles auprès de Fluke

Туре	Tension/Courant	Nº de référence Fluke
Amérique du Nord	120V/15A	LC-1
Amérique du Nord	240V/15A	LC-2
Europe (universel)	220V/16A	LC-3
Royaume-Uni	240V/13A	LC-4
Suisse	220V/10A	LC-5
Australie	240V/10A	LC-6
Afrique du Sud	240V/5A	LC-7

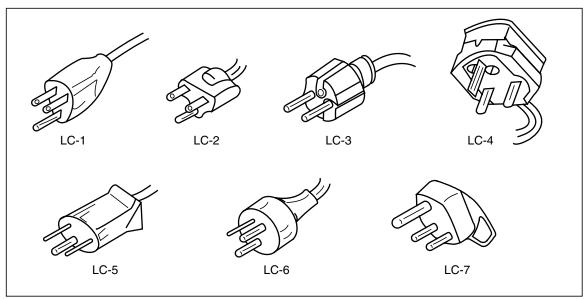


Figure 2-3. Types de cordons d'alimentation secteur proposés par Fluke

alh3.eps

Mise sous tension

∧ ∧ Avertissement

Pour éviter les risques d'électrocution, brancher le cordon d'alimentation de l'instrument dans une prise de courant mise à la terre. La sécurité du fonctionnement exige la présence d'un fil de terre de protection dans le cordon d'alimentation.

Après avoir sélectionné la tension secteur et connecté le cordon d'alimentation au multimètre, branchez le cordon à une prise de courant et basculez l'interrupteur du panneau arrière en appuyant sur le côté « I » de l'interrupteur.

Réglage de la béquille

Pour l'utilisation sur table, vous pouvez régler la poignée ou béquille du multimètre et assurer ainsi deux angles de vue. Pour régler sa position, tirez sur les extrémités de la béquille jusqu'à la butée (environ 0,6 cm de chaque côté) et réglez-la sur l'une des quatre positions d'arrêt présentées sur la figure 2-4. Pour retirer entièrement la poignée, réglez-la sur la position d'arrêt verticale et tirez complètement sur les extrémités.

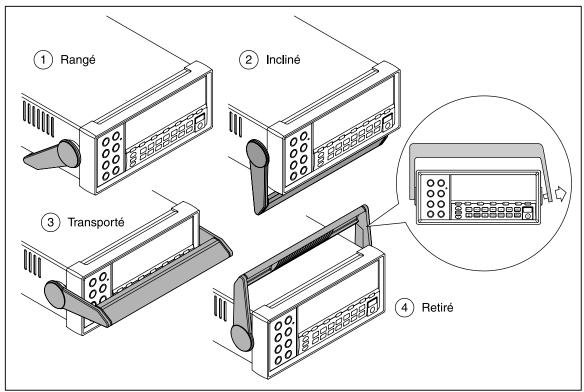


Figure 2-4. Retrait et réglage de la béquille

cay017.eps

Installation de l'instrument dans une baie d'équipement

Le multimètre peut être monté dans un bâti standard de 19 pouces en utilisant un kit de montage en bâti. Reportez-vous à la section « Options et accessoires » du chapitre 1 pour commander cet accessoire. Pour préparer le montage en bâti, retirez la béquille (voir la section « Réglage de la béquille » ci-dessus) et les fourreaux de protection avant et arrière. Reportez-vous ensuite aux instructions fournies avec le kit de montage en bâti pour monter le multimètre.

Nettoyage du multimètre

∧ ∧ Avertissement

Pour éviter les risques d'électrocution ou l'endommagement du multimètre, ne pas laisser l'eau pénétrer dans son boîtier.

⚠ Attention

Pour ne pas endommager le boîtier, ne pas appliquer de solvant sur le multimètre.

Si le multimètre exige d'être nettoyé, essuyez-le à l'aide d'un chiffon légèrement imbibé d'eau savonneuse. N'utilisez pas de solvant chloré ou aromatique ni de liquide à base de méthanol pour essuyer le multimètre.

8845A/8846A

Mode d'emploi

Chapitre 3 Fonctions de la face avant

Titre	
Introduction	3-3
Commandes et indicateurs	
Descriptions des fonctions de la face avant	
Afficheur	
Connecteurs de la face arrière	3-6
Réglage des gammes sur le multimètre	3-7
Navigation sur le menu de la face avant	
Configuration du multimètre pour les mesures	
Configuration de la résolution d'affichage	3-7
Réglage du filtre de signal alternatif	
Réglage des paramètres du contrôle de diode	
et du seuil de résistance de continuité	3-8
Réglage de l'échelle des températures par défaut (8846A uniquement)	3-9
Activation de l'impédance d'entrée automatique	
Utilisation des fonctions d'analyse	3-9
Collecte des statistiques de mesures	
Utilisation des tests de limites	3-11
Définition d'une valeur décalée	3-12
Utilisation de la fonction MX+B	3-12
Graphe de tendance (TrendPlot)	3-13
Utilisation de la fonction Histogramme	3-14
Contrôle des fonctions de déclenchement	
Sélection d'une source de déclenchement	3-15
Réglage du délai de déclenchement	3-16
Définition du nombre d'échantillons	3-17
Explication du signal de « mesure terminée »	
Accès et contrôle de la mémoire.	3-17
Stockage des mesures en mémoire	3-17
Rappel des mesures de la mémoire	
Enregistrement des informations de configuration du multimètre	
Rappel d'une configuration du multimètre	3-20
Gestion de la mémoire	
Contrôle des opérations liées au système	
Identification des erreurs de mesure	
Interrogation du niveau de révision du micrologiciel	3-21

8845A/8846A

Mode d'emploi

Réglage de la luminosité d'écran	3-21
Réglage de la date et de l'heure de mesure	3-22
Configuration de l'interface distante	
Vérification de la date d'étalonnage du multimètre	
Rétablissement des paramètres par défaut du multimètre	

Introduction

Le multimètre est contrôlé en transmettant des commandes à l'une de ses interfaces de communication ou en manipulant manuellement les commandes de sa face avant. Ce chapitre explique la fonction et l'utilisation des commandes et des indicateurs des faces avant et arrière du multimètre. Le fonctionnement du multimètre à l'aide des interfaces utilisateur est expliqué dans le manuel de programmation (*Programmers Manual*).

Commandes et indicateurs

Descriptions des fonctions de la face avant

Le tableau 3-1 présente les connecteurs et les commandes de la face avant du multimètre.

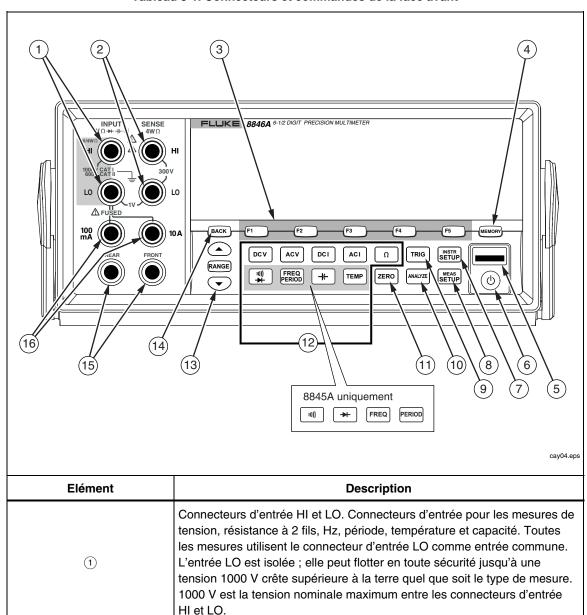
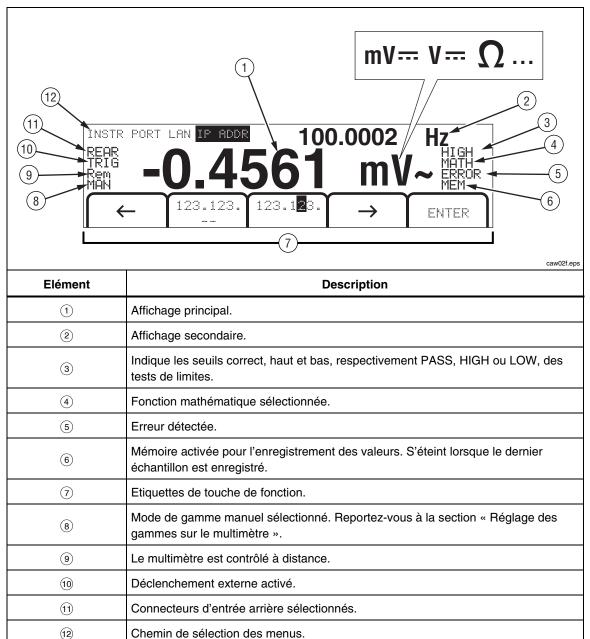


Tableau 3-1. Connecteurs et commandes de la face avant


2	Connecteurs de mesure HI et LO. Connecteurs de sortie pour produire le courant des mesures ohmiques à 4 fils.
3	Touches de fonction F1 à F5. Ces touches de fonction permettent de sélectionner diverses options de menu en naviguant sur les menus du multimètre. Chaque fonction est identifiée par une étiquette sur la ligne inférieure de l'affichage. Les touches qui n'ont pas d'étiquette au-dessus sont inactives
4	Touche mémoire pour accéder à la mémoire externe et interne ^[1] contenant les mesures et les configurations du multimètre. Reportez-vous à la section « Accès et contrôle de la mémoire » pour plus de détails à ce sujet.
(5)	Port USB. [1] Branchement d'un périphérique de mémoire optionnel pour enregistrer les résultats de mesure.
6	Touche de veille pour désactiver l'affichage. En mode de veille, le multimètre ne répond pas aux commandes à distance ou aux commandes de la face avant. Quand il sort du mode de veille, le multimètre adopte sa configuration de démarrage.
7	Touche de configuration de l'instrument. Permet d'accéder à la configuration et à la sélection de l'interface de communication, aux commandes à distance, aux paramètres du système et de réinitialiser le multimètre.
8	Touche de configuration de l'instrument. Permet d'accéder au paramètre de résolution, aux fonctions de déclenchement, à la configuration des températures, à la sélection de la référence dBm, aux paramètres de continuité et à d'autres paramètres de mesure apparentés.
9	Touche de déclenchement. Déclenche la mesure lorsque le multimètre est réglé sur déclenchement externe. Reportez-vous à la section « Contrôle des fonctions de déclenchement » plus loin dans ce chapitre pour utiliser la touche de déclenchement (TRIG) et contrôler le cycle de mesure du multimètre.
(10)	Touche d'analyse. Permet d'accéder aux fonctions mathématiques, statistiques, au graphe de tendance (TrendPlot) et à l'histogramme.
(1)	Touche du zéro. Utilise la mesure active comme valeur décalée pour créer des valeurs relatives.
12	Touches de fonction du multimètre. Permet de sélectionner la fonction du multimètre, soit volts c.c., volts c.a., ampères c.c., ampères c.a., ohms, continuité, contrôle de diode, fréquence, période, capacité ^[1] , et température ^[1] . Pour le 8845A, les quatre touches inférieures changent les fonctions ; voir l'encart.
(13)	Touches de gamme. Sélectionne le mode de gamme automatique ou manuel. Permet également d'augmenter ou de diminuer la gamme en mode manuel.
(14)	Touche Retour. Recule d'un niveau dans la sélection des menus.
(15)	Commutateur d'entrée avant et arrière. Tous les connecteurs d'entrée de la face avant, sauf 10 A, sont disponibles sur la face arrière du multimètre. Ces commutateurs permettent de basculer d'un connecteur d'entrée à l'autre.
(16)	Connecteurs d'entrée de 100 mA et 10 A pour les mesures de courants c.a. et c.c.

Afficheur

L'afficheur décrit dans le tableau 3-2 a les trois fonctions suivantes. Il :

- affiche les mesures sous forme de valeur, avec les unités de mesure et leurs statistiques en format numérique et graphique (graphe de tendance TrendPlot et histogramme).
- affiche les étiquettes des touches de fonction F1 à F5.
- identifie le mode de fonction actif, local (MAN) ou distant (REM).

Tableau 3-2. Eléments d'affichage

Les résultats des mesures occupent les deux premières lignes de l'affichage. L'affichage principal est constitué de gros caractères comprenant 6½ chiffres (-1999999 à 1999999), plus un point décimal. Dans l'exemple représenté, l'affichage primaire indique les résultats pour une mesure de tension alternative.

L'affichage secondaire est plus petit que l'affichage primaire ; il se trouve dans le coin supérieur droit de l'affichage. Il peut toutefois afficher également 6½ chiffres. Il permet d'afficher les résultats d'une mesure secondaire associée à la mesure principale. Dans l'exemple représenté, l'affichage secondaire affiche la fréquence de la mesure de tension alternative.

Les étiquettes des touches de fonctions, sur la troisième ligne, identifient les fonctions des cinq touches en dessous de l'afficheur.

Connecteurs de la face arrière

Le tableau 3-3 indique les branchements sur la face arrière et décrit leur utilisation.

CAUTION:

FOR FIRE PROTECTION REPLACE ONLY WITH A 250V FUSE AS STATED IN MANUAL. CAL STICKER Δı IEEE488 WARNING: SERIAL TAG **(** 5 caw05.eps Elément **Description** (1) Connecteur du cordon d'alimentation secteur (2) Interrupteur marche/arrêt Porte-fusible et sélecteur de tension secteur (3) **(**4**)** Connecteurs de la face arrière[1] (5) Port de sortie de mesure terminée et port d'entrée de déclenchement externe 6 Connecteur Ethernet (LAN) Connecteur RS-232. Voir l'annexe C pour les signaux disponibles sur ce (7) connecteur. Connecteur IEEE488 (GPIB) 8 (9) Connecteur de terre Remarques:

[1] Les mesures de courant de 10 A peuvent être effectuées par le biais des connecteurs de la

Tableau 3-3. Connecteurs de la face arrière

face arrière.

Réglage des gammes sur le multimètre

Remarque

La gamme de l'affichage secondaire est toujours la même que dans l'affichage primaire lorsque les fonctions sont les mêmes.

Une pression de RANGE permet de basculer entre le mode de gamme automatique et manuel du multimètre. La gamme sélectionnée par le mode automatique devient la gamme sélectionnée quand vous choisissez le mode manuel. Le multimètre éteint MAN lorsque la gamme automatique est sélectionnée.

Une pression de ou de permet de basculer du mode automatique au mode manuel et de passer respectivement à la gamme inférieure ou supérieure depuis la gamme sélectionnée par le mode automatique. MAN s'affiche aussi sur l'affichage. Si le signal d'entrée est supérieur à la capacité de la gamme sélectionnée, le multimètre affiche over load et envoie 9,9000 E+37 sur l'interface distante.

En mode automatique, le multimètre sélectionne automatiquement la gamme supérieure suivante lorsque la valeur mesurée dépasse la pleine échelle de la gamme active. Si aucune gamme supérieure n'est disponible, over load s'affiche sur l'affichage primaire ou secondaire. Le multimètre sélectionne automatiquement la gamme inférieure suivante si la valeur mesurée tombe en dessous (11 %) de la pleine échelle.

Navigation sur le menu de la face avant

Le multimètre utilise un système de menus à plusieurs niveaux pour sélectionner les paramètres, configurations et fonctions. La navigation et la sélection des menus sont réalisées avec les cinq touches de fonction de la face avant (F1 F2 F3 F4 F5) et avec la touche BACK). Les cinq touches de fonction sont étiquetées sur la ligne inférieure de l'écran; l'étiquetage est tributaire de la fonction sélectionnée.

Les sections suivantes, « Configuration du multimètre pour les mesures » et les instructions du chapitre 4 « Réalisation des mesures » expliquent le système de menus du multimètre.

Configuration du multimètre pour les mesures

La résolution d'affichage du multimètre, la fréquence des lectures, le déclenchement, le seuil de continuité, le niveau de courant du contrôle de diode, l'échelle de température par défaut et le type de sonde RTD (détecteur thermorésistif) peuvent être réglés par la fonction de configuration des mesures (Meas Setup).

Configuration de la résolution d'affichage

Les étapes pour configurer la résolution d'affichage du multimètre varient selon la fonction sélectionnée. Les fonctions de mesures en volts c.c., courant c.c. et ohmiques définissent la résolution en fonction du cycle de l'alimentation en entrée (PLC). Les mesures en volts c.a., courant c.a., fréquence, période, capacité et température définissent la résolution en utilisant un seuil bas, intermédiaire et haut.

Pour définir la résolution d'affichage pour les mesures en volts c.c., courant c.c. et ohms :

- 1. Appuyez sur setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction sous l'étiquette DIGITS PLC pour faire apparaître le menu de sélection de la résolution.

Les étiquettes des touches de fonction sont mises à jour et présentent cinq choix.

4DIGIT.02PLC 5DIGIT.2PLC 5DIGIT1PLC 6DIGIT10PLC 6DIGIT100PLC

Ces choix déterminent la résolution affichée (4½, 5½ et 6½ chiffres) et la durée du cycle de mesure en référence à la fréquence secteur en cycles (PLC)

Par exemple, 5 DIGIT 1 PLC affiche la résolution à 5½ chiffres et relève une mesure par cycle d'alimentation. Pour une alimentation à 60 Hz, une mesure a lieu tous les 60^e de seconde. Soit 16,6666 millisecondes.

3. Appuyez sur la touche de fonction étiquetée avec la résolution souhaitée.

Pour définir la résolution d'affichage pour les mesures en volts c.a., courant c.a., fréquence, période, capacité et température :

- 1. Appuyez sur setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction sous l'étiquette DIGITS PLC pour faire apparaître le menu de sélection de la résolution.

Trois étiquettes de touches de fonction sont mises à jour ; elles affichent HIGH, MEDIUM et LOW. Le nombre réel de chiffres affichés est tributaire de la fonction sélectionnée et de la gamme du multimètre.

3. Appuyez sur la touche de fonction étiquetée avec la résolution souhaitée.

Réglage du filtre de signal alternatif

Trois filtres c.a. peuvent être employés pour effectuer des mesures plus précises : 3 Hz lent, 20 Hz et 200 Hz.

Un filtre est proposé comme modificateur pour les mesures en volts c.a. et en courant c.a. La pression de la touche de fonction **Filter** fait apparaître un menu qui permet de sélectionner l'un des trois filtres.

Remarque

Le filtre de 20 Hz est la sélection activée par défaut au démarrage.

Réglage des paramètres du contrôle de diode et du seuil de résistance de continuité

La résistance du seuil défini pour la fonction de continuité et la quantité de courant et de tension utilisée pour les tests de diode peuvent être réglés. Le seuil de la résistance de continuité peut être défini sur quatre valeurs différentes : 1Ω , 10Ω , 100Ω et $1 k\Omega$. Le courant et la tension du contrôle de diode peuvent également être définis sur deux valeurs différentes : 5 V ou 10 V et 1 mA ou 0.1 mA.

Réglage de la résistance du seuil de continuité

Le seuil de résistance peut être défini sur 1, 10, 100 ou 1000 Ω . Pour régler le seuil :

- 1. Appuyez sur setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction MORE.
- 3. Appuyez sur la touche de fonction CONTIN OHMS.
- 4. Appuyez sur la touche de fonction étiquetée avec le seuil souhaité.

Reportez-vous à la section « Continuité de test » dans le chapitre 4 pour tester la continuité.

Réglage du courant et de la tension du contrôle de diode

Pour régler le courant de test de diode :

- 1. Appuyez deux fois sur pour le modèle 8846A, ou une fois sur pour le modèle 8845A pour sélectionner la fonction de diode.
- 2. Appuyez sur la touche de fonction 1mH ou 0.1mH pour définir le courant du test de diode.
- 3. Appuyez sur la touche de fonction 5V ou 10V pour définir la tension du test de diode.

Reportez-vous à la section « Vérification des diodes » dans le chapitre 4 pour vérifier les diodes.

Réglage de l'échelle des températures par défaut (8846A uniquement)

Lorsque la fonction de température est sélectionnée, le multimètre affiche les mesures de température en fonction d'une échelle de température présélectionnée (par défaut).

Pour changer l'échelle de température par défaut :

- 1. Appuyez sur setup pour afficher le menu de sélection de configuration des mesures.
- 2. Appuyez sur la touche de fonction **TEMP UNITS** pour afficher le menu de sélection de l'échelle de température.

Les échelles de température disponibles en degrés C pour Celsius (°C), F pour Fahrenheit (°F) et K pour Kelvin (K).

3. Appuyez sur la touche de fonction étiquetée avec l'échelle souhaitée.

Reportez-vous à la section « Mesure de température » dans le chapitre 4 pour effectuer une mesure de température à l'aide du multimètre.

Activation de l'impédance d'entrée automatique

L'impédance d'entrée du multimètre est d'environ $10~M\Omega$. Toutefois, l'activation de la fonction d'impédance d'entrée automatique permet de mesurer une impédance d'entrée aussi élevée que $10~G\Omega$ selon le signal appliqué en entrée du multimètre.

Pour activer l'impédance d'entrée automatique :

- 1. Appuyez sur setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction MORE.
- 3. Appuyez sur la touche de fonction AUTO INPUT Z.

L'étiquette de la touche de fonction apparaît en surbrillance pour indiquer que l'entrée automatique Z est activée. Appuyez de nouveau sur la touche de fonction pour désactiver la fonction.

Utilisation des fonctions d'analyse

Le multimètre est capable d'effectuer des opérations mathématiques avec les valeurs mesurées et d'analyser une série de mesures. A l'exception du contrôle de diode et de la continuité, toutes les fonctions du multimètre permettent d'utiliser les fonctions d'analyse. Les fonctions mathématiques s'appliquent aux statistiques, aux limites, au décalage et à mX + b. L'analyse des mesures du multimètre est effectué à l'aide du graphe de tendance TrendPlot et de l'histogramme.

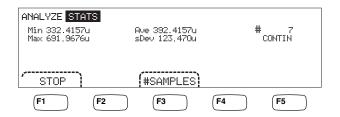
Appuyez sur ANALYZE pour accéder aux fonctions d'analyse.

Collecte des statistiques de mesures

La fonction d'analyse statistique affiche les valeurs minimales et maximales d'une série de mesures du multimètre. Le multimètre calcule aussi une moyenne et un écart type pour la même série de mesures. Cette fonction permet également de contrôler le départ et l'arrêt de la série de mesures.

Lancement de la collecte des mesures

Pour lancer le processus statistique :


- 1. Appuyez sur AMALYZE pour afficher le menu d'analyse du multimètre.
- 2. Appuyez sur la touche de fonction STATS.

Le multimètre lance la collecte des données immédiatement. Les mesures individuelles ne sont jamais enregistrées dans le multimètre mais chaque lecture est ajoutée au calcul de l'écart type et de moyenne. La valeur mesurée est comparée en même temps aux valeurs enregistrées dans les registres minimum et maximum et elle remplace l'une de ces valeurs si elle est plus faible que la valeur minimale ou supérieure à la valeur maximale.

Lors de la collecte d'une série de mesures, le processus peut être interrompu en appuyant sur la touche de fonction STOP. Pour lancer les calculs sur une autre série de mesures, appuyez sur la touche de fonction RESTART.

Lecture des valeurs min, max, écart type et moyenne

L'affichage est actualisé en continu, en même temps que les mesures sont collectées, pour afficher les toutes dernières données statistiques (voir l'exemple ci-dessous).

caw03.eps

L'écart type, les valeurs minimale, maximale et moyenne sont affichés, avec le nombre de mesures ayant servi au calcul des statistiques.

Arrêt de la collecte de mesure

Deux méthodes arrêtent la collecte des mesures pour la fonction des statistiques.

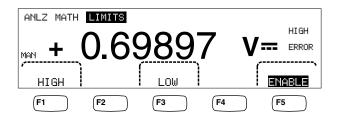
Pour arrêter manuellement la collecte des mesures, appuyez sur la touche de fonction STOF à partir du menu statistique. L'affichage est actualisé pour afficher le résultat final des statistiques.

Le processus peut être interrompu automatiquement en saisissant le nombre d'échantillons qui va permettre de calculer les statistiques. Pour saisir le nombre d'échantillons statistiques :

1. Appuyez sur #SAMPLES dans la fonction des statistiques.

Pour sélectionner le chiffre à ajuster, appuyez sur la touche de fonction étiquetée <-- ou -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.


2. Appuyez sur ENTER pour définir le nombre d'échantillons.

Remarque

La mise à zéro du nombre d'échantillons sur le multimètre entraîne une collecte d'échantillons en continu.

Utilisation des tests de limites

La fonction des limites assure des tests de type correct/échec selon les seuils inférieur et supérieur spécifiés par l'utilisateur. Ces seuils sont stockés en mémoire volatile et sont remis à zéro lorsque le multimètre est mis sous tension ou qu'il reçoit une commande de réinitialisation de l'interface distante. Un changement de fonction définit également les limites à zéro.

caw029.eps

Le multimètre affiche OK dans l'affichage secondaire pendant le test sur la face avant lorsque la mesure se trouve dans la fourchette des seuils inférieur et supérieur. Il affiche HIGH ou LOW conformément à l'exemple ci-dessus pour chaque mesure en dehors de cette fourchette. L'avertisseur sonore retentit une fois pour signaler la première mesure en dehors des limites après une mesure correcte (OK).

Pour le fonctionnement à distance, le multimètre peut être réglé pour générer une demande de service (SRQ) à la première apparition d'une mesure en dehors des limites. Reportez-vous au *manuel de programmation* pour plus de détails sur la validation SRQ de ce test.

Pour régler les seuils haut et bas sur la face avant :

- 1. Appuyez sur ANALYZE.
- 2. Appuyez sur la touche de fonction MATH
- 3. Appuyez sur la touche de fonction LIMITS.
- 4. Appuyez sur la touche de fonction HIGH ou LOW conformément à l'exemple cidessus pour définir respectivement les limites haute et basse.

Pour sélectionner le chiffre à ajuster, appuyez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée -- pour diminuer le chiffre, ou sur ++ pour augmenter le caractère. Le caractère le plus à droite est le multiplicateur. Ce caractère peut être réglé sur p, n, μ , m, k, M ou G.

- 5. Appuyez sur **ENTER** pour définir la limite sélectionnée.
- 6. Appuyez sur **ENABLE** pour lancer le test des limites.

Remarque

Comme les seuils haut et bas sont indépendants l'un de l'autre, les conditions haute et basse peuvent être satisfaites par une mesure. Dans ce cas, le multimètre donne la priorité à la condition du seuil bas en affichant LOW et en réglant le bit de poids faible du registre d'événements suspect.

Reportez-vous au *manuel de programmation* pour des instructions sur la définition à distance des limites.

Définition d'une valeur décalée

La fonction de décalage permet d'afficher la différence entre une valeur mesurée et une valeur de décalage enregistrée. Ce type de mesure est connu en tant que mesure relative.

Deux méthodes permettent de saisir une valeur de décalage dans le multimètre. La première consiste à saisir le numéro spécifié dans le registre de décalage à partir de la face avant ou de l'interface distante. Les valeurs enregistrées précédemment sont remplacées par la nouvelle valeur. La valeur de décalage est stockée dans la mémoire volatile ; elle est mise à zéro lorsque le multimètre est mis sous tension ou reçoit une commande de réinitialisation de l'interface distante.

La deuxième méthode consiste à mesurer la valeur de référence souhaitée à partir des branchements d'entrée du multimètre en appuyant sur [ZERO]. La valeur mesurée est placée dans le registre de décalage et l'affichage montre immédiatement la différence entre les mesures et la valeur stockée.

Remarque

La touche Zéro ne peut pas être utilisée pour effectuer le zéro d'une mesure DB ou DBM. Reportez-vous à « Mesure de tension alternative » dans le chapitre 4 de ce manuel.

Pour saisir une valeur décalée à partir de la face avant :

- 1. Appuyez sur ANALYZE.
- 2. Appuyez sur la touche de fonction MATH
- 3. Appuyez sur la touche de fonction OFFSET.

Pour sélectionner le chiffre à ajuster, appuyez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée - pour diminuer le chiffre, ou sur ++ pour augmenter le caractère. Le caractère le plus à droite est le multiplicateur. Ce caractère peut être réglé sur p, n, μ , m, k, M ou G.

4. Appuyez sur **ENTER** pour définir la valeur du registre de décalage.

Utilisation de la fonction MX+B

La fonction MX+B permet de calculer une valeur linéaire en utilisant une valeur mesurée (X) et deux constantes : M et B. La constante M représente un gain et la constante B un décalage.

Pour effectuer un calcul X+B:

- 1. Appuyez sur ANALYZE.
- 2. Appuyez sur la touche de fonction MATH.
- 3. Appuyez sur la touche de fonction **mX+B**.

Pour saisir la valeur M:

4. Appuyez sur la touche de fonction mix

Pour sélectionner le chiffre à ajuster, appuyez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.

- 5. Appuyez sur **ENTER** pour saisir la valeur M.
- 6. Appuyer sur BACK pour revenir au menu MX+B.

Pour saisir la valeur B:

7. Appuyez sur la touche de fonction **B**.

Pour sélectionner le chiffre à ajuster, appuyez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée - pour diminuer le chiffre, ou sur ++ pour augmenter le caractère. Le caractère le plus à droite est le multiplicateur. Ce caractère peut être réglé sur p, n, μ , m, k, M ou G.

- 8. Appuyez sur la touche ENTER.
- 9. Appuyer sur (BACK) pour revenir au menu MX+B.
- 10. Appuyez sur la touche de fonction **ENABLE** pour lancer les calculs MX+B.

ENABLE reste en surbrillance, et toutes les mesures affichées indiquent la valeur mesurée modifiée par la formule MX+B.

Une nouvelle pression de **ENABLE** désactive la fonction MX+B, et **ENABLE** n'apparaît plus mis en surbrillance.

Graphe de tendance (TrendPlot)

La fonction TrendPlot fournit une représentation visuelle du signal mesuré au fil du temps. L'affichage du multimètre est utilisé au trois quarts pour calculer les valeurs maximale et minimale verticalement, l'axe horizontal correspondant au temps. Les axes vertical et horizontal ne sont pas étalonnés et ne représentent que l'amplitude et le temps relatif en fonction du signal d'entrée.

Chaque repère graphique est un trait vertical d'un pixel d'épaisseur qui représente les valeurs maximale (marque supérieure) et minimale (marque inférieure) relevées par le multimètre dans l'intervalle de temps depuis le repère précédent. Le repère graphique le plus à gauche représente le temps écoulé depuis le début du graphe de tendance TrendPlot. Lorsque tous les repères disponibles remplissent la zone du graphique, le multimètre les comprime dans une moitié de la zone graphique. Le processus de compression utilise les valeurs maximale et minimale entre deux repères graphiques et positionne un repère unique représentant les valeurs maximale et minimale des deux repères combinés. Les futurs repères graphiques ajoutés à la fin de l'affichage comprimé sont maintenant les valeurs de mesure maximale et minimale relevées pendant une période de temps deux fois plus longue que celle qui précède la compression.

Si l'amplitude de la valeur mesurée dépasse la gamme positive ou négative de l'axe vertical, le multimètre ajuste la gamme verticale pour prendre en compte la gamme du nouveau repère graphique. La taille des repères graphiques positionnés précédemment est réduite proportionnellement au nouvel axe vertical.

La partie gauche de l'afficheur indique les valeurs maximale et minimale relevées depuis le début d'une session TrendPlot. La longueur de la session TrendPlot est affichée en heures, minutes et secondes (hh:mm:ss).

Pour lancer une session TrendPlot:

1. Configurez le multimètre pour la mesure souhaitée en sélectionnant la fonction et en branchant le signal à l'entrée du multimètre.

Remarque

Avec avoir réglé la gamme en mode manuel, le graphe de tendance s'affiche en bas ou en haut de la zone graphique, sans entraîner d'ajustement de l'amplitude lorsque le signal d'entrée dépasse les limites de la gamme de mesure.

- 2. Appuyez sur ANALYZE pendant que le multimètre effectue les mesures.
- 3. Appuyez sur la touche de fonction TREND PLOT pour lancer la session.

Comme le montre la figure 3-1, l'affichage se met à calculer les mesures sur la zone graphique, et les valeurs maximale, minimale et le temps écoulé s'affichent.

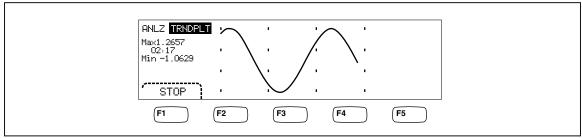


Figure 3-1. Graphe de tendance (TrendPlot)

caw057.eps

Pour arrêter la session TrendPlot, appuyez sur BACK ou sur la touche de fonction STOP.

Pour relancer la session TrendPlot, appuyez sur la touche de fonction STOP suivie de RESTART.

Utilisation de la fonction Histogramme

La fonction Histogramme fournit une représentation graphique de l'écart type d'une série de mesures. L'affichage du multimètre est occupé aux deux tiers à droite par un graphique à barres. L'axe vertical correspond à la mesure relative du nombre de valeurs tandis que 10 barres verticales représentent l'écart type sur l'axe horizontal. Les deux barres centrales indiquent le nombre de mesures tombant de part et d'autre de la lecture moyenne dans le 1^{er} écart type. Les deux barres de part et d'autre des deux barres centrales représentent le nombre de mesures tombant dans le 2^e écart type. Les deux barres suivantes représentent le 3^e écart type, et ainsi de suite jusqu'au 5^e écart type.

La fonction Histogramme est utile pour examiner la distribution standard de l'unité testée. Tout en examinant le graphique à barres (voir Figure 3-2), réglez la commande variable de l'unité testée pour établir la crête sur les deux barres centrales de l'histogramme.

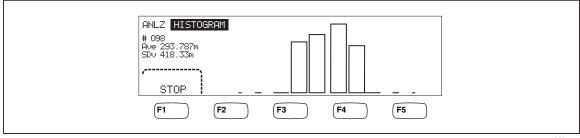


Figure 3-2. Affichage de l'histogramme

caw056.eps

En plus du graphique à barres, le tiers gauche de l'affichage indique aussi le nombre d'échantillons, la moyenne et l'écart type.

Pour lancer une session d'histogramme :

- 1. Configurez le multimètre pour la mesure souhaitée en sélectionnant la fonction et en branchant le signal à l'entrée du multimètre.
- 2. Appuyez sur pendant que le multimètre effectue les mesures.
- 3. Appuyez sur HISTOGRAM pour lancer la session.

L'afficheur ajuste le graphique à barres à mesure que le nombre de mesures augmente. Les valeurs d'écart type et de moyenne changent également selon les mesures recueillies.

Pour relancer la session d'histogramme, appuyez sur la touche de fonction STOP suivie de RESTART.

Pour arrêter la session d'histogramme, appuyez sur BACK ou sur la touche de fonction STOP.

Contrôle des fonctions de déclenchement

Les fonctions de déclenchement du multimètre permettent de sélectionner une source de déclenchement de mesures, de définir le nombre de mesures (échantillons) par déclenchement, ainsi que le délai entre la réception du déclenchement et le début d'une mesure. La fonction de déclenchement fournit également un signal de « mesure terminée » sur le port de déclenchement de la face arrière. Reportez-vous à l'article 5 du tableau 3-3. Le déclenchement à distance du multimètre par l'une de ses interfaces de communication est traité dans le *manuel de programmation*. Les sections suivantes décrivent le déclenchement automatique du multimètre (déclenchement interne), ou externe à partir de la touche de déclenchement de la face avant et du connecteur de déclenchement de la face arrière.

La configuration et la commande de la fonction de déclenchement sont accessibles à partir de la touche setup de configuration des mesures.

Sélection d'une source de déclenchement

Le multimètre propose quatre sources de déclenchement pour les mesures : automatique, touche de déclenchement touche de la face avant, externe et distante. A l'exception du déclenchement à distance, la source de déclenchement est sélectionnée à partir du menu situé sous le menu de configuration des mesures.

Pour sélectionner une source de déclenchement :

- 1. Appuyez sur setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction TRIGGER pour afficher les sélections de commandes de déclenchement.

Remarque

Le déclenchement du multimètre par le biais d'une commande à distance n'est accessible que par l'interface à distance. Reportez-vous à la section « Déclenchement » (Triggering) dans le manuel de programmation pour plus de détails sur le déclenchement à distance.

Déclenchement automatique

En mode de déclenchement automatique, les mesures du multimètre sont déclenchées par un circuit interne. Ces déclenchements sont continus et se produisent aussi vite que la

configuration le permet. Le déclenchement automatique est la source de déclenchement du multimètre au démarrage.

Pour rétablir le mode de déclenchement automatique du multimètre,

1. Appuyez sur SETUP .

Si le multimètre est en mode de déclenchement externe, l'étiquette de touche de fonction EXT TRIG apparaît en surbrillance sur l'affichage.

2. Appuyez sur la touche de fonction étiquetée EXT TRIG.

Déclenchement externe

En mode de déclenchement externe, le multimètre lance une mesure lorsqu'une impulsion vraie de faible intensité est détectée sur le connecteur du déclenchement externe, ou que la touche de déclenchement sur la face avant est activée. Pour chaque déclenchement ou impulsion reçue, le multimètre effectue le nombre de mesures selon le délai de déclenchement spécifié.

Remarque

La touche de déclenchement est désactivée lorsque le multimètre est en mode distant.

Pour configurer un déclenchement externe :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction étiquetée TRIGGER.
- 3. Appuyez sur la touche de fonction étiquetée EXT TRIG

L'étiquette de touche de fonction Ext Trig reste en surbrillance pour indiquer que le multimètre est en mode de déclenchement externe. Appuyez de nouveau sur EXT TRIG pour revenir en mode de déclenchement automatique.

Si le multimètre ne reçoit pas de déclenchement pendant une seconde ou deux, un indicateur TRIG s'éclaire pour indiquer que le multimètre attend un déclenchement. Une pression de la touche rue ou la présence d'un front montant positif sur le port de déclenchement exécute une mesure.

Réglage du délai de déclenchement

Une mesure du multimètre peut être retardée pendant un délai défini après la réception d'un déclenchement. Cette fonction est utile quand il faut attendre la stabilisation du signal avant de le mesurer. Lorsqu'un délai de déclenchement est spécifié, il s'applique à toutes les fonctions et les gammes.

Pour définir un délai de déclenchement :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction étiquetée TRIGGER.
- 3. Appuyez sur la touche de fonction étiquetée TRIG DELAY.

Le délai de déclenchement peut être défini entre 0 et 3600 secondes avec une résolution de 10 microsecondes.

4. Pour sélectionner le chiffre à ajuster, appuvez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le chiffre.

5. Une fois le délai défini, appuyez sur la touche de fonction étiquetée **ENTER**.

Définition du nombre d'échantillons

Le multimètre effectue une mesure (un échantillon) lorsqu'il reçoit un signal de déclenchement s'il est « en attente » d'un déclenchement. Il peut être réglé toutefois pour relever un nombre de mesures spécifique avec chaque déclenchement.

Pour définir le nombre d'échantillons par déclenchement :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction étiquetée TRIGGER.
- 3. Appuvez sur la touche de fonction étiquetée # SAMPLES.

Le nombre d'échantillons par déclenchement peut être défini entre 0 et 59999 secondes.

4. Pour sélectionner le chiffre à ajuster, appuyez sur <-- ou sur -->.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le chiffre.

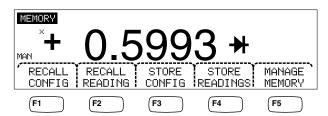
5. Une fois le délai défini, appuyez sur la touche de fonction étiquetée ENTER.

Explication du signal de « mesure terminée »

Le port de déclenchement sur la face arrière du multimètre fournit une impulsion vraie de faible intensité à la conclusion de chaque mesure. Reportez-vous à la section des spécifications pour plus de détails sur ce signal.

Accès et contrôle de la mémoire

Le multimètre enregistre les mesures et les informations de configuration dans les mémoires interne et externe (8846A uniquement). Sur le modèle 8846A, la mémoire externe se connecte par le biais du port USB sur la face avant du multimètre. Une mémoire optionnelle avec plusieurs capacités de stockage est disponible auprès de Fluke. Reportez-vous à la section « Options et accessoires » du chapitre 1 pour les références Fluke. Une fonction de gestion mémoire permet de supprimer les fichiers alors que d'autres permettent d'enregistrer et de rappeler des mesures et des configurations.


Pour accéder aux fonctions de la mémoire, appuyez sur la touche MEMORY. Le menu de la mémoire apparaît au-dessus des cinq touches de fonction : RECALL SETUP, RECALL READING, STORE SETUP, STORE READINGS et MANAGE MEMORY.

Stockage des mesures en mémoire

Le multimètre peut contenir au total 9999 valeurs dans un fichier de la mémoire interne. Le modèle 8846A, avec sa mémoire externe, peut contenir 999 fichiers supplémentaires de 5000 mesures chacun.

Pour enregistrer les valeurs en mémoire interne :

1. Appuyez sur MEMORY.

caw032.eps

- 2. Appuyez sur la touche de fonction STORE READINGS représentée ci-dessus.
- 3. Appuyez sur la touche de fonction INTERNAL MEMORY si cela n'est pas déjà fait.
- 4. Appuyez sur la touche de fonction # SAMPLES.
- 5. Pour sélectionner le nombre d'échantillons, appuyez sur <-- ou sur --> pour choisir un chiffre.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.

- 6. Une fois le nombre d'échantillons souhaité défini, appuyez sur la touche de fonction **ENTER** pour revenir au menu d'enregistrement des valeurs.
- 7. Appuyez sur la touche de fonction START pour lancer l'enregistrement des mesures. La touche de fonction START change et devient STOP; pressez-la pour arrêter l'enregistrement. Une fois le nombre d'échantillons demandé enregistré, l'étiquette de touche de fonction redevient START. L'indicateur MEM sur l'affichage s'éclaire également pendant l'enregistrement des valeurs.

Remarque

Pour le stockage interne des mesures, le nombre de valeurs enregistré ne dépassera pas 9999 lectures quel que le soit le nombre d'échantillons défini.

Pour enregistrer les résultats dans la mémoire externe (8846A uniquement)

- 1. Appuyez sur MEMORY.
- 2. Appuyez sur la touche de fonction STORE READINGS.
- 3. Appuyez sur la touche de fonction **USB**.
- 4. Appuyez sur la touche de fonction # SAMPLES.
- 5. Pour sélectionner le nombre d'échantillons, appuyez sur <-- ou sur --> pour choisir un chiffre.

Quand le chiffre souhaité est sélectionné, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.

- 6. Une fois le nombre d'échantillons souhaité défini, appuyez sur la touche de fonction **ENTER** pour revenir au menu d'enregistrement des valeurs.
- 7. Appuyez sur la touche de fonction START pour lancer l'enregistrement des mesures. La touche de fonction START change et devient STOP; pressez-la pour arrêter l'enregistrement. Une fois le nombre d'échantillons demandé enregistré, l'étiquette de touche de fonction redevient START. L'indicateur MEM sur l'affichage s'éclaire également pendant l'enregistrement des valeurs.

Remarque

Chaque adresse mémoire peut enregistrer 5000 mesures. Si le nombre d'échantillons est défini sur une valeur supérieure à 5000, les fichiers consécutifs de la mémoire seront utilisés pour enregistrer tous les échantillons. Si les valeurs remplissent le dernier fichier (999), le stockage des mesures est interrompu.

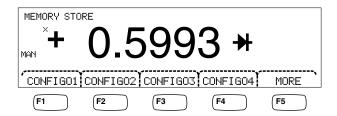
Rappel des mesures de la mémoire

Pour rappeler les mesures en mémoire interne :

- 1. Appuyez sur (MEMORY).
- 2. Appuyez sur la touche de fonction RECALL READING.

3. Appuyez sur la touche de fonction RECALL INT MEM.

Le multimètre affiche la première mesure enregistrée dans le fichier interne. Quatre touches de fonction permettent de faire défiler les valeurs enregistrées dans le fichier. La touche de fonction FIRST affiche la première valeur du fichier tandis que la touche de fonction LAST affiche la dernière valeur. Utilisez les touches de fonction <-- et --> pour avancer et remonter dans le fichier d'une mesure à la fois.


Pour rappeler les mesures de la mémoire externe (8846A uniquement), le périphérique mémoire doit être débranché du modèle 8846A et branché dans un ordinateur PC pour la lecture des fichiers à virgules de séparation. Chaque fichier est étiqueté MEAS0XXX.CSV. XXX correspond au numéro de fichier de 001 à 999. Chaque fichier est horodaté.

Enregistrement des informations de configuration du multimètre

Cinq configurations peuvent être enregistrées dans la mémoire interne du multimètre. Le modèle 8846A, avec sa mémoire USB installée en option, peut enregistrer 99 configurations supplémentaires dans sa mémoire externe.

Pour enregistrer une configuration dans la mémoire interne du multimètre :

- 1. Appuyez sur MEMORY.
- 2. Appuyez sur la touche de fonction STORE CONFIG conformément à l'exemple ci-dessous.

caw033.eps

- 3. Appuyez sur la touche de fonction STORE INT MEM.
- 4. Appuyez sur l'une des cinq touches de fonction étiquetées avec l'emplacement mémoire souhaité pour enregistrer la configuration actuelle du multimètre.

Pour enregistrer une configuration dans la mémoire externe optionnelle (8846A uniquement) :

- 1. Appuyez sur (MEMORY).
- 2. Appuyez sur la touche de fonction STORE CONFIG.
- 3. Appuyez sur la touche de fonction STORE USB.

Le multimètre étiquète les quatre premières touches de fonction avec les quatre premiers emplacements mémoire. CONFIG01 à CONFIG04. La cinquième touche de fonction est étiquetée MORE pour accéder à l'ensemble des 100 emplacements mémoire.

4. Pour enregistrer la configuration actuelle dans l'un des quatre premiers emplacements mémoire, appuyez sur la touche de fonction appropriée. Pour enregistrer la configuration actuelle dans un autre emplacement que les quatre premiers, appuyez sur la touche de fonction MORE.

L'afficheur indique l'emplacement mémoire disponible suivant. Si tous les

- emplacements mémoire sont saturés pour la configuration, le multimètre indique toujours l'emplacement mémoire 10.
- 5. Pour régler l'affichage sur l'emplacement mémoire souhaité, appuyez sur <-- ou sur --> pour sélectionner un chiffre spécifique.

Quand le chiffre souhaité est sélectionné, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le chiffre.

6. Une fois l'emplacement mémoire souhaité défini, appuyez sur la touche de fonction **ENTER** pour enregistrer la configuration du multimètre.

Rappel d'une configuration du multimètre

Pour rappeler une configuration de la mémoire interne :

- 1. Appuyez sur (MEMORY).
- 2. Appuyez sur la touche de fonction RECALL CONFIG.
- 3. Appuyez sur la touche de fonction RECALL INT MEM.
- 4. Appuyez sur la touche de fonction étiquetée avec l'emplacement mémoire (CONFIG01 à CONFIG05).

Pour rappeler une configuration de la mémoire interne (8846A uniquement) :

- 1. Appuyez sur MEMORY.
- 2. Appuyez sur la touche de fonction RECALL CONFIG.
- 3. Appuyez sur la touche de fonction RECALL USB.

Le multimètre étiquette les quatre premières touches de fonction avec les quatre premiers emplacements mémoire. CONFIG01 à CONFIG04. La cinquième touche de fonction est étiquetée MORE pour accéder à l'ensemble des 100 emplacements mémoire.

- 4. Pour rappeler une configuration de l'un des quatre premiers emplacements mémoire, appuyez sur la touche de fonction appropriée. Pour choisir un autre emplacement que les quatre premiers, appuyez sur la touche de fonction MORE.
 - L'affichage indique le dernier emplacement mémoire contenant une configuration du multimètre. Si tous les emplacements mémoire sont saturés pour la configuration, le multimètre indique toujours l'emplacement mémoire 10.
- 5. Pour sélectionner l'emplacement mémoire, appuyez sur <-- ou sur --> pour choisir un chiffre particulier.
 - Quand le chiffre souhaité est sélectionné, appuyez sur la touche de fonction étiquetée pour diminuer le chiffre, ou sur ++ pour augmenter le chiffre.
- 6. Une fois l'emplacement mémoire défini, appuyez sur la touche de fonction **ENTER** pour rappeler la configuration du multimètre.

Gestion de la mémoire

Le multimètre permet d'effacer le contenu de la mémoire interne et d'afficher l'état de la mémoire externe (8846A uniquement). Conformément aux exigences du Ministère américain de la Défense, le multimètre permet d'effacer des modules mémoire USB externes les fichiers de mesure et de configuration du multimètre. Les autres fichiers ne sont pas effacés des modules.

Pour effacer le contenu de la mémoire interne :

1. Appuyez sur MEMORY.

- 2. Appuyez sur la touche de fonction MANAGE MEMORY.
- 3. Appuyez sur la touche de fonction ERASE MEMORY.
- 4. Pour effacer définitivement toutes les mesures et configurations enregistrées ainsi que la chaîne utilisateur et le nom de l'hôte de la mémoire interne, appuyez sur la touche de fonction ERASE. Sinon, appuyez sur la touche de fonction CANCEL.

Pour vérifier le volume de mémoire externe disponible (8846A uniquement) :

- 1. Appuyez sur MEMORY.
- 2. Appuyez sur la touche de fonction MANAGE MEMORY.
- 3. Appuyez sur la touche de fonction USB STATUS.

Après quelques secondes, le multimètre affiche la mémoire externe totale, sa quantité utilisée et son espace disponible.

Contrôle des opérations liées au système

Identification des erreurs de mesure

Lorsque le multimètre détecte une erreur, l'indicateur d'erreur (élément 5 du tableau 3-2) est éclairé et l'avertisseur retentit. L'annexe B de ce manuel présente la liste des erreurs de mesure possibles.

Pour lire la ou les erreurs :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur SYSTEM.
- 3. Appuyez sur ERROR.
- 4. La première erreur, s'il y en a plusieurs, est affichée. Pour lire d'autres erreurs, appuyez sur NEXT.

Pour effacer tous les messages d'erreur sans examiner chacune d'elle, appuyez sur la touche de fonction CLR ALL.

Interrogation du niveau de révision du micrologiciel

Le multimètre permet d'afficher la version matérielle, la version logicielle et le numéro de série de l'instrument.

Pour afficher les versions et le numéro de série :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction sous SYSTEM.
- 3. Appuyez sur la touche de fonction sous VERSIONS + SN en dessous du menu Setup.

L'afficheur indique la version logicielle du module de mesure externe (OutGSW), la version logicielle du module de mesure interne (InGSW), la version matérielle du module de mesure externe (OutGHW) et la version matérielle du module de mesure interne (InGHW). Il affiche également le numéro de série du multimètre (Serial #).

Réglage de la luminosité d'écran

Le réglage de la luminosité d'écran s'effectue à l'aide de la touche Instr Setup.

Pour régler la luminosité de l'affichage :

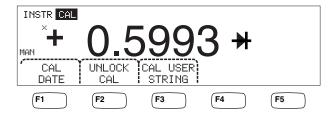
- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction SYSTEM.
- 3. Appuyez sur la touche de fonction BRIGHT.
- 4. Appuyez sur l'une des touches de fonction sous LOW, MEDIUM et HIGH.
- 5. Appuyer sur BACK pour revenir au menu précédent.

Réglage de la date et de l'heure de mesure

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction SYSTEM.
- 3. Appuvez sur la touche de fonction DATE TIME.
- 4. Pour régler la date et l'heure affichées, appuyez sur <-- ou sur --> pour sélectionner le chiffre du mois.

Après avoir sélectionné le chiffre ou le mois voulu, appuyez sur la touche de fonction étiquetée — pour diminuer le chiffre, ou sur ++ pour augmenter le chiffre.

5. Appuyez sur la touche de fonction **ENTER** pour définir la date et l'heure et revenir au menu du système.


Configuration de l'interface distante

La sélection d'un port d'interface, la configuration des ports et la sélection du jeu de commandes reconnu par le multimètre sont réalisées à l'aide de la touche Instr Setup. Pour plus de détails sur les commandes contrôlant le multimètre à distance, reportez-vous au manuel de programmation.

Vérification de la date d'étalonnage du multimètre

Pour lire la date d'étalonnage du multimètre :

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction CHL conformément à l'exemple ci-dessous.

caw034.en

- 3. Appuyez sur la touche de fonction CAL DATE pour afficher le dernier étalonnage du multimètre.
- 4. Appuyer sur BACK pour revenir au menu précédent.

Rétablissement des paramètres par défaut du multimètre

Pour restaurer les paramètres par défaut du multimètre :

- 1. Appuyez sur setup pour afficher le menu de configuration de l'instrument.
- 2. Appuyez sur la touche de fonction RESET pour remettre à zéro le multimètre.

Chapitre 4 Réalisation des mesures

Titre	
Introduction	4-3
Sélection des modificateurs de fonction	4-3
Activation de l'affichage secondaire	4-3
Mesures de tension	
Mesures de tension continue.	4-4
Mesures de tensions alternatives	4-5
Mesure de fréquence et de période	4-6
Mesures de résistance	
Mesure d'une résistance à deux fils	
Mesure d'une résistance à quatre fils	4-8
Mesures de courant	4-10
Mesures de courant continu	
Mesures de courant alternatif	4-12
Mesures de capacité (8846A uniquement)	4-13
Mesure de température RTD (8846A uniquement)	4-13
Test de continuité	4-14
Vérification des diodes	4-15
Réalisation d'une mesure déclenchée	
Réglage du mode de déclenchement	4-16
Réglage du délai de déclenchement	4-17
Réglage du nombre d'échantillons par déclenchement	4-17
Branchement d'un déclenchement externe	4-17
Surveillance du signal de mesure terminée	4-18

8845A/8846A

Mode d'emploi

Introduction

∧ ∧ Avertissement

Pour éviter les risques d'électrocution et/ou l'endommagement du multimètre :

- Lire les consignes de sécurité du chapitre 1 avant d'utiliser ce multimètre.
- Ne pas appliquer plus de 1000 volts entre une borne quelconque et la terre.

Ce chapitre décrit les diverses étapes qui permettent d'effectuer les mesures à l'aide des fonctions du multimètre, et notamment les branchements sécurisés et appropriés entre le multimètre et le circuit, ainsi que la manipulation des commandes de la face avant pour afficher la mesure sélectionnée.

Si les commandes de la face avant ne vous sont pas familières, lisez les sections pertinentes du chapitre 3.

Sélection des modificateurs de fonction

La plupart des fonctions décrites dans ce chapitre proposent des sélections pour modifier la méthode de présentation des valeurs mesurée et du traitement du signal d'entrée. Ces « modificateurs de fonction » s'affichent sur la ligne inférieure de l'écran sous forme d'étiquettes de touches de fonction. Les sélections possibles sont tributaires de la fonction sélectionnée ; elles sont présentées avec les fonctions du multimètre décrites dans ce chapitre.

Activation de l'affichage secondaire

Pour la plupart des fonctions du multimètre, un paramètre de mesure supplémentaire apparaît sur l'afficheur. Ces paramètres supplémentaires sont disponibles lorsque **2ND MEAS** apparaît au-dessus d'une touche de fonction.

La mesure secondaire est alors soit un autre paramètre du signal primaire (p. ex. tension alternative et fréquence d'un signal), soit une mesure d'un autre signal établie simultanément avec le signal primaire (p. ex. tension continue et courant continu).

La gamme de l'affichage secondaire est toujours contrôlée automatiquement.

Pour sélectionner une mesure secondaire :

1. Appuyez sur la touche de fonction étiquetée 2ND MEAS.

Chaque pression supplémentaire de cette touche entraîne l'affichage en boucle des mesures disponibles dans la fenêtre secondaire. Après l'apparition de la dernière mesure secondaire, la pression suivante de cette touche de fonction désactive l'affichage secondaire.

Remarque

Quand on passe d'une fonction à l'autre, la sélection de la dernière fonction sélectionnée dans l'affichage secondaire est mémorisée ; elle est activée lorsque cette fonction est sélectionnée la prochaine fois.

Mesures de tension

Le multimètre est capable de mesurer les tensions jusqu'à 1000 V c.c., 750 V c.a. (8845A) ou 1000 V c.a. (8846A).

⚠ Attention

Pour ne pas griller les fusibles voire endommager d'autres équipements, ne pas appliquer de tension en entrée du multimètre avant d'avoir correctement branché les cordons de mesure et sélectionné la fonction de tension appropriée.

Mesures de tension continue

Pour effectuer une mesure de tension continue :

1. Appuyez sur ocv.

L'icône de tension continue **V** apparaît à droite de la valeur affichée selon l'exemple ci-dessous.

caw021.eps

- 2. Raccordez les cordons de mesure aux entrées du multimètre conformément à la figure 4-1.
- 3. Branchez les cordons de mesure au circuit et relevez la tension mesurée dans l'afficheur du multimètre.

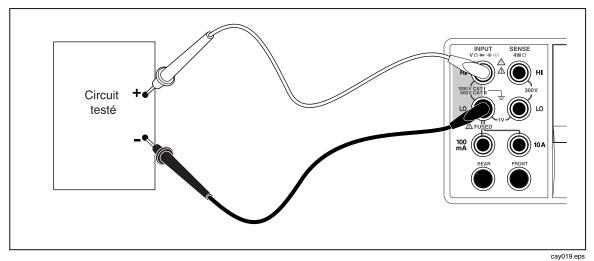


Figure 4-1. Branchement d'entrée pour les mesures de tension, de résistance et de fréquence

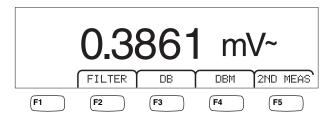
Modificateurs de fonction:

FILTER Un filtre passe-bas de 8 hertz pour l'élimination des signaux et du bruit supérieurs à 8 Hz est introduit pour stabiliser les mesures. Le

filtre est actif lorsque cette étiquette de touche de fonction apparaît en surbrillance; il augmente le temps de stabilisation ou la mesure.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif. Lorsqu'une deuxième fonction de mesure est sélectionnée, l'étiquette de touche de fonction 2ND MEAS apparaît en surbrillance.

> **VAC** – Affiche le signal alternatif chevauchant la tension continue mesurée.


Reportez-vous à la section « Touches de gammes » du chapitre 1 pour basculer entre le mode de gamme manuelle et automatique.

Mesures de tensions alternatives

Pour effectuer une mesure de tension alternative :

1. Appuyez sur ACV.

L'icône de tension alternative **V∼** apparaît sur l'afficheur selon l'exemple suivant.

caw022.eps

- 2. Raccordez les cordons de mesure à l'entrée du multimètre conformément à la figure 4-1.
- 3. Branchez les cordons de mesure au circuit et relevez la tension mesurée dans l'afficheur du multimètre

Modificateurs de fonction:

Filter

Affiche le menu du filtre. Pour des mesures stables et une précision optimale, choisissez un filtre en fonction de la plus basse fréquence à mesurer.

3HZ SLOW Assure une précision de mesure supérieure sur les signaux alternatifs entre 3 Hz et 20 Hz. Toutefois, le cycle de mesure dure plus longtemps qu'avec l'utilisation du filtre de 20 Hz.

20HZ Assure une précision de mesure supérieure sur les signaux alternatifs entre 30 Hz et 200 Hz. Le cycle de mesure dure plus longtemps qu'avec l'utilisation du filtre de 200 Hz.

200 HZ Assure des mesures précises sur les signaux alternatifs égaux ou supérieurs à 200 Hz.

dB Affiche la tension mesurée sous forme d'une valeur en décibels référencée à une valeur relative mémorisée (dB = 20 log (Vnouvelle/Venregistrée). La valeur mémorisée est basée sur la première mesure fournie par le multimètre après la pression de la touche de fonction dE. Toutes les mesures ultérieures sont affichées

en utilisant la valeur enregistrée en tant que décalage. Pour annuler le mode dB du multimètre, appuyez sur la touche de fonction dB.

dBm

Affiche la tension mesurée sous forme de valeur en décibel référencée à 1 milliwatt (dBm = 10 log(Vnouvelle / résistance de référence / 1 mW). Pour prendre en compte les diverses impédances qui permettent d'établir la mesure en dBm, le multimètre permet de sélectionner 21 valeurs d'impédances différentes.

Pour définir l'impédance de référence en dB:

- 1. Appuyez sur SETUP.
- 2. Appuyez sur la touche de fonction étiquetée dBm REF.

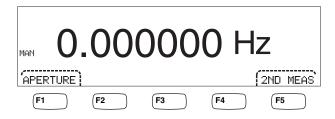
Les paramètres d'impédance disponibles sont présentés par groupes de trois valeurs. Pour passer à un groupe d'impédances supérieures, appuyez sur ++ -->. Appuyez sur <-- -- pour passer à un groupe d'impédances inférieures.

3. Une fois l'impédance mise en surbrillance, appuyez sur la touche de fonction sous la valeur sélectionnée.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif. Lorsqu'une deuxième fonction de mesure est sélectionnée, l'étiquette de touche de fonction 2ND MEAS apparaît en surbrillance.

VDC – Affiche la tension continue que chevauche probablement le signal alternatif.

Frequency – Affiche la fréquence du signal alternatif appliqué aux connecteurs d'entrée **Input HI** et **LO** du multimètre.


Mesure de fréquence et de période

Le multimètre mesure la fréquence, ou la période des signaux alternatifs entre 3 Hz et 1 MHz appliqués entre les connecteurs HI et LO du multimètre.

La touche FREGO active non seulement la fonction de mesure de la fréquence/période du multimètre, elle permet aussi de basculer entre la mesure de période et de fréquence du signal sur l'affichage primaire. L'apparition d'une mesure de période ou de fréquence après la pression de FREGO dépend donc de l'état de cette fonction lors de sa dernière utilisation.

Pour effectuer une mesure de fréquence :

1. Appuyez sur PERIOD.

caw06f.eps

Si S apparaît, appuyez de nouveau sur FREQ pour basculer sur la fréquence dans l'affichage primaire.

2. Branchez le multimètre au signal conformément à la figure 4-1.

Pour effectuer une mesure de période :

1. Appuyez sur FREQ PERIOD.

Si **HZ** apparaît, appuyez de nouveau sur FREQ pour basculer sur la mesure de période dans l'affichage primaire.

2. Branchez le multimètre au signal conformément à la figure 4-1.

Remarque

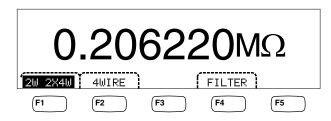
Chaque pression de PERIOD permet de basculer entre la mesure de fréquence et de période.

Modificateurs de fonction:

AFERTURE Affiche les trois sélections du temps de propagation par porte : 0,01, 0,1 et 1 seconde. Ces sélections définissent la délai minimum que met le multimètre pour mesurer la fréquence. Les temps de propagation plus courts entraînent une moins grande résolution de mesure.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif. Lorsqu'une deuxième fonction de mesure est sélectionnée, l'étiquette de touche de fonction 2ND MEAS apparaît en surbrillance.

Period – Si la mesure d'une fréquence s'affiche dans l'affichage primaire, la période du signal s'affiche dans l'affichage secondaire avec la pression de la touche de fonction **2ND** MEAS.


Mesures de résistance

Le multimètre est capable d'effectuer des mesures de résistance à deux ou à quatre fils. Les mesures à deux fils sont faciles à configurer ; elles fournissent des mesures précises dans la plupart des applications. Dans une mesure de résistance à deux fils, la mesure et le courant de source sont fournis par le biais des bornes d'entrée **INPUT HI** et **LO**. Une mesure de résistance à quatre fils fournit le courant par le biais des bornes **INPUT HI** et **LO** et utilise **SENSE HI** et **LO** pour mesurer la résistance.

Mesure d'une résistance à deux fils

Pour effectuer une mesure de résistance à deux fils :

- 1. Raccordez les cordons de mesure aux connecteurs d'entrée du multimètre conformément à la figure 4-1.
- 2. Appuyez sur Ω .

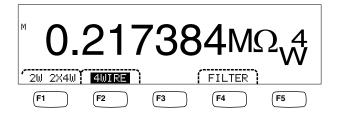
caw030.eps

3. Appuyez sur la touche de fonction 2W 2X4W si elle n'est pas déjà en surbrillance (voir ci-dessus).

Modificateurs de fonction:

FILTER

Un filtre passe-bas de 8 hertz pour l'élimination des signaux et du bruit supérieurs à 8 Hz est introduit pour stabiliser les mesures. Le filtre est actif lorsque cette étiquette de touche de fonction apparaît en surbrillance ; il augmente le temps de stabilisation ou la mesure.


Reportez-vous à la section « Touches de gammes » du chapitre 3 de ce manuel pour régler la gamme de mesure.

Mesure d'une résistance à quatre fils

Le multimètre comprend deux méthodes pour effectuer les mesures de résistance à quatre fils. La méthode classique consiste à utiliser quatre cordons de mesure pour relier le multimètre à la résistance à mesurer. Les cordons de mesure optionnels à 2x4 fils simplifient les mesures à quatre fils : il suffit de brancher deux cordons de mesure dans les connecteurs **Input HI** et **LO** du multimètre.

Pour effectuer une mesures de résistance à quatre fils en utilisant quatre cordons de mesure :

- 1. Raccordez les cordons de mesure aux connecteurs d'entrée du multimètre conformément à la figure 4-2.
- 2. Appuyez sur Ω .

caw031.eps

3. Appuyez sur la touche de fonction 4 WIRE si elle n'est pas déjà en surbrillance pour sélectionner la fonction de mesure à quatre fils.

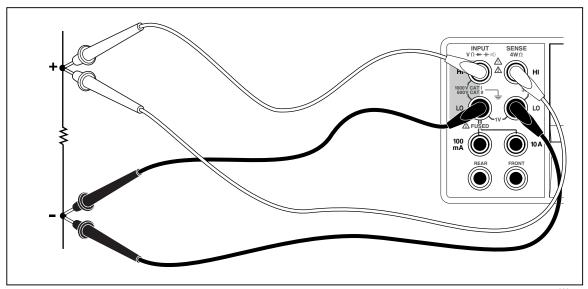


Figure 4-2. Branchements d'entrée pour les mesures de résistance à 4 fils

caw023.eps

Pour effectuer une mesures de résistance à quatre fils à l'aide des cordons de mesure 2x4 de Fluke :

- 1. Raccordez les cordons de mesure aux connecteurs d'entrée du multimètre conformément à la figure 4-3.
- 2. Appuyez sur Ω .
- 3. Appuyez sur la touche de fonction 2X4WIRE si elle n'est pas déjà en surbrillance.

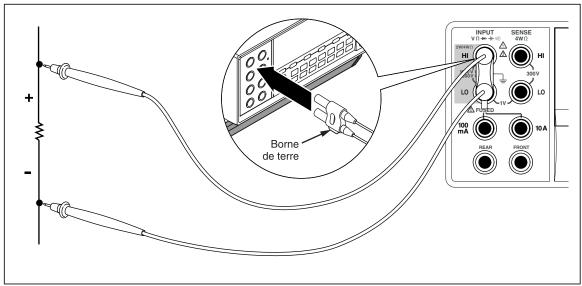


Figure 4-3. Branchements d'entrée pour les mesures de résistance à 4 fils à l'aide des cordons 2x4 fils

cay060.eps

Modificateurs de fonction:

FILTER

Un filtre de 8 hertz est introduit pour stabiliser la mesure. Le filtre est actif lorsque l'étiquette de cette touche de fonction apparaît en surbrillance.

Reportez-vous à la section « Touches de gammes » du chapitre 3 de ce manuel pour régler la gamme de mesure.

Mesures de courant

Le multimètre est capable d'effectuer des mesures de courant alternatif et continu jusqu'à 10 A. Deux connecteurs d'entrée distincts, en association avec le connecteur **LO**, sont utilisés pour les mesures de courant. Pour une résolution optimale, les mesures de courant ne dépassant pas 100 mA doivent être effectuées en utilisant les connecteurs d'entrée **LO** et **mA** conformément à la figure 4-4.

∧ Attention

Pour ne pas griller le fusible d'entrée de courant ou endommager le multimètre :

- Les mesures de courant entre 120 mA et 10 A doivent être effectuées en n'utilisant que les connecteurs d'entrée 10 A et LO.
- AVANT de mettre le circuit à mesurer sous tension, brancher correctement les cordons de mesure aux entrées du multimètre pour le courant attendu.
- Une intensité supérieure à 400 mA sur le connecteur d'entrée 100 mA, ou supérieure à 11 A sur le connecteur 10 A, fait sauter le fusible interne.

Les mesures de courants prévues entre 120 mA et 10 A sont effectuées à l'aide des connecteurs d'entrée **Input LO** et **10A** conformément à la figure 4-5.

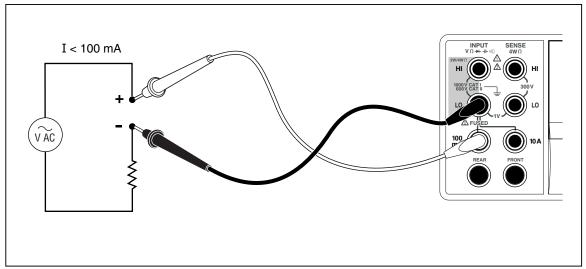
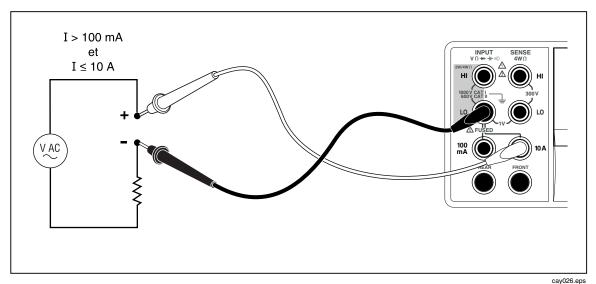
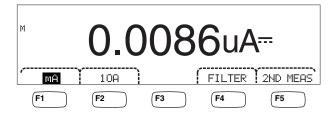


Figure 4-4. Branchements d'entrée pour les mesures de courant inférieures à 120 mA

caw025.eps




Figure 4-5. Branchements d'entrée pour les mesures de courant supérieures à 120 mA

Reportez-vous à la section « Touches de gammes » du chapitre 3 de ce manuel pour régler la gamme de mesure.

Mesures de courant continu

Pour mesurer le courant continu :

- 1. Reliez les cordons de mesure entre les connecteurs d'entrée du multimètre et le circuit mesuré conformément à la figure 4-4 pour les courants égaux ou inférieurs à 120 mA, ou à la figure 4-5 pour les courants jusqu'à 10 A.
- 2. Appuyez sur DCI.

caw09f.eps

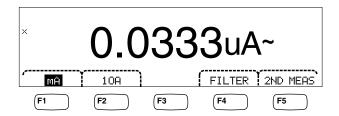
- 3. Après avoir connecté les cordons de mesure aux connecteurs d'entrée **100 mA** et **Input LO**, appuyez sur la touche de fonction mH conformément à l'exemple cidessus si cette touche n'est pas déjà en surbrillance. Si les cordons de mesure sont branchés dans les connecteurs **10A** et **Input LO**, appuyez sur la touche de fonction **10H**.
- 4. Mettez le circuit mesuré sous tension et relevez le courant affiché sur le multimètre.

Modificateurs de fonction :

FILTER Un filtre passe-bas de 8 hertz pour l'élimination des signaux et du bruit supérieurs à 8 Hz est introduit pour stabiliser les mesures. Le filtre est actif lorsque cette étiquette de touche de fonction apparaît en surbrillance ; il augmente le temps de stabilisation ou la mesure.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif. Lorsqu'une deuxième

4-11


fonction de mesure est sélectionnée, l'étiquette de touche de fonction 2ND MEAS apparaît en surbrillance.

IAC – Affiche le courant alternatif chevauchant la mesure de courant continu.

Mesures de courant alternatif

Pour mesurer le courant alternatif :

- 1. Reliez les cordons de mesure entre the connecteurs d'entrée du multimètre et le circuit mesuré conformément à la figure 4-4 ou à la figure 4-5, selon le niveau de courant anticipé.
- 2. Appuyez sur ACI.

caw08f.eps

- 3. Après avoir connecté les cordons de mesure aux connecteurs d'entrée **100 mA** et **Input LO**, appuyez sur la touche de fonction m\vec{H} conformément à l'exemple cidessus si cette touche n'est pas déjà en surbrillance. Si les cordons de mesure sont branchés dans les connecteurs **10A** et **Input LO**, appuyez sur la touche de fonction **10**\vec{H}.
- 4. Mettez le circuit mesuré sous tension et relevez le courant affiché sur le multimètre.

Modificateurs de fonction:

Filter

Affiche le menu du filtre. Pour des mesures stables et une précision optimale, choisissez un filtre en fonction de la plus basse fréquence à mesurer.

3HZ SLOW Assure une précision de mesure supérieure sur les signaux alternatifs entre 3 Hz et 20 Hz. Toutefois, le cycle de mesure dure plus longtemps qu'avec l'utilisation du filtre de 20 Hz.

Assure une précision de mesure supérieure sur les signaux alternatifs entre 30 Hz et 200 Hz. Toutefois, le cycle de mesure dure plus longtemps qu'avec l'utilisation du filtre de 200 Hz.

200 HZ Assure des mesures précises sur les signaux alternatifs égaux ou supérieurs à 200 Hz.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif. Lorsqu'une deuxième fonction de mesure est sélectionnée, l'étiquette de touche de fonction 2ND MEAS apparaît en surbrillance.

IAC - Affiche le courant continu chevauché par le signal alternatif.

Frequency – Affiche la fréquence du signal alternatif sur les connecteurs **Input HI** et **LO** du multimètre.

Mesures de capacité (8846A uniquement)

Le Fluke 8846A est capable de mesurer la capacité entre 1 pF et 100 mF (0,1 F).

Pour effectuer une mesure de capacité :

1. Appuyez sur 🖟. Un exemple de l'écran de capacité est représenté ci-dessous :

caw10f.eps

2. Raccordez les cordons de mesure du multimètre conformément à la figure 4-6.

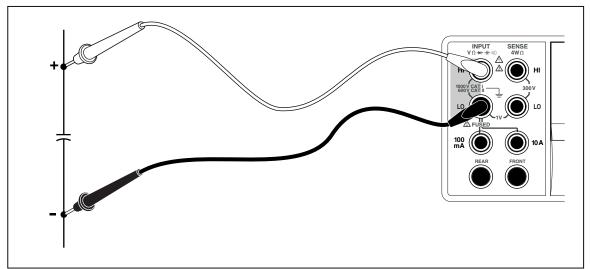


Figure 4-6. Mesure de capacité

caw027.eps

Reportez-vous à la section « Touches de gammes » du chapitre 3 de ce manuel pour régler la gamme de mesure.

Mesure de température RTD (8846A uniquement)

Le Fluke 8846A est capable de mesurer des températures entre -200 °C et 600 °C en utilisant des sondes RTD (détecteurs thermorésistifs).

Pour effectuer une mesure de température :

1. Branchez la sonde RTD aux connecteurs **Input HI** et **LO**, puis aux connecteurs **SENSE HI** et **LO** conformément à la figure 4-7.

4-13

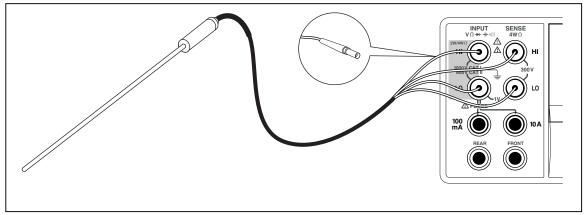
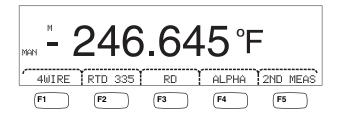



Figure 4-7. Mesures de température

caw028.eps

2. Appuyez sur TEMP pour afficher la température mesurée conformément à l'exemple ci-dessous

caw11f.eps

Pour modifier l'échelle de température, reportez-vous à la section « Définition de l'échelle de température par défaut » du chapitre 3 de ce manuel. Les échelles sont disponibles en degrés Celsius, Fahrenheit et Kelvin.

Reportez-vous à la section « Réglage de la gamme de mesure » du chapitre 3 de ce manuel pour régler la gamme de mesure.

Modificateurs de fonction:

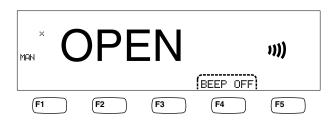
Bascule les connecteurs d'entrée sur une mesure à 4 fils pour les sondes RTD à 4 fils. Les sondes RTD à 4 fils établissent des mesures plus précises.

RTD 385 Type de sonde RTD par défaut. Tous les coefficients sont prédéfinis.

RO Permet de sélectionner une autre valeur de résistance RTD à 0 °C.

Permet de définir le premier coefficient de l'équation de Callendar-Van Dusen.

2ND MEAS Répète en boucle les fonctions de mesure (voir ci-dessous) sur l'affichage secondaire, puis l'état inactif.


OHMS – Affiche la résistance de la sonde RTD. La résistance à 2 fils est utilisée en mode de température à 2 fils, et la résistance à 4 fils lorsque le multimètre est en mode RTD à 4 fils.

Test de continuité

Le test de continuité détermine si un circuit est intact (c.-à-d. si sa résistance est inférieure au seuil). Le seuil est sélectionnable entre 1 et $1000~\Omega$.

Pour effectuer un test de continuité :

1. Appuyez sur w sur le 8846A ou sur sur le 8845A. Un exemple de l'écran de continuité est représenté ci-dessous :

caw12f.eps

2. Branchez les cordons de mesure conformément à la figure 4-1.

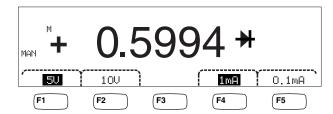
Si l'option est active, l'avertisseur retentit lorsque la résistance tombe en dessous du seuil défini.

Si la touche de fonction BEEP OFF est en surbrillance, appuyez sur BEEP OFF pour activer l'avertisseur.

Pour définir la valeur du seuil, reportez-vous à la section « Définition de la résistance du seuil de continuité » du chapitre 3 de ce manuel.

Modificateurs de fonction:

Aucun


Vérification des diodes

La fonction du contrôle de diode envoie un courant par une jonction à semi-conducteur tandis que le multimètre mesure la baisse de tension aux bornes de la ou des jonctions. Les mesures sont affichées dans la gamme 10 V aux vitesses de mesure rapide et intermédiaire. « OPEN » s'affiche pour les tensions de 10 % supérieures à la tension de conformité. Une baisse de tension typique sur des jonctions correctes est comprise entre 0,3 et 0,8 volt. Si cette option est activée, l'avertisseur émet un bref signal sonore s'il détecte une jonction correcte. Les diodes en court-circuit indiquent une tension sensiblement plus basse.

La tension de conformité supérieure (jusqu'à 10 V) permet à la fonction de contrôle de diode du multimètre de tester les diodes zéner jusqu'à 10 volts, les piles de diodes et les DEL. Le courant sélectionnable permet d'adapter le test de diode à la tension anticipée pour la jonction testée.

Pour vérifier une diode :

1. Appuyez deux fois sur sur le 8846A, ou une fois sur sur le 8845A. Un exemple de l'écran du contrôle de diode est représenté ci-dessous :

caw13f.eps

- 2. Sélectionnez le courant et la tension de test appropriés pour la diode testée en appuyant sur les touches de fonction associées.
- 3. Branchez les cordons de mesure conformément à la figure 4-8.

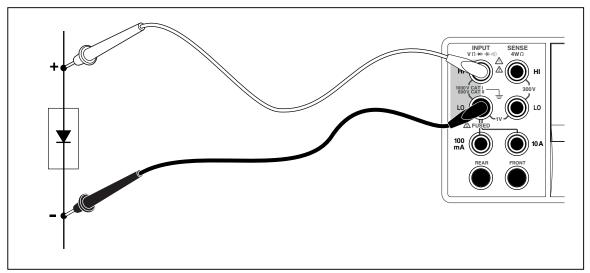


Figure 4-8. Branchements des tests de diode

caw024.eps

Modificateurs de fonction:

Aucun

Quatre touches de fonction permettent de modifier le courant et la tension de test appliqués à la diode par le biais des cordons de mesure. La tension de conformité est définie sur 5 volts ou sur 10 volts. Le courant de conformité est défini sur 1 mA ou sur 0,1 mA. Appuyez sur la touche de fonction appropriée pour sélectionner le paramètre de tension et de courant souhaité.

Réalisation d'une mesure déclenchée

Le déclenchement du cycle de mesure sur le multimètre est défini à partir du menu de déclenchement et exécuté à partir d'un branchement sur la face arrière, ou de la touche de déclenchement (TRIG) du panneau avant. Le menu de déclenchement permet également de définir le délai de déclenchement et le nombre d'échantillons ou de cycles de mesures relevés par déclenchement reçu. Tous les paramètres de la fonction de déclenchement sont accessibles à partir de la touche de configuration des mesures.

Appuyez sur setup pour afficher le menu de configuration des mesures (MEAS SETUP).

Une mesure peut également être déclenchée à partir du port IEEE 488 avec une commande à distance. Cette méthode de déclenchement est décrite dans le chapitre 5.

Réglage du mode de déclenchement

Le cycle de mesure du multimètre peut être déclenché par le circuit de mesure interne ou par un stimulus externe.

Pour sélectionner le mode de déclenchement :

1. Après avoir affiché le menu de configuration de mesure, appuyez sur la touche de fonction TRIGGER.

Si EXT TRIG est en surbrillance, le cycle de mesure est déclenché en mode externe, soit par le jack de déclenchement externe sur la face arrière, soit par la touche de déclenchement sur la face avant. Si EXT TRIG n'est pas en surbrillance, le cycle de mesure du multimètre est déclenché automatiquement par son circuit interne.

2. Appuyez sur la touche de fonction étiquetée EXT TRIG pour basculer entre le déclenchement interne et externe

Réglage du délai de déclenchement

En mode de déclenchement externe, le multimètre est capable de retarder le début du cycle de mesure après la détection du stimulus de déclenchement pendant 3600 secondes maximum.

Pour définir un délai de déclenchement :

- 1. Après avoir affiché le menu de configuration de mesure, appuyez sur la touche de fonction TRIGGER.
- 2. Appuyez sur la touche de fonction étiquetée TRIG DELAY.
- 3. Utilisez les touches de fonction pour définir le délai du déclenchement.

Sélectionnez le chiffre dans la valeur en appuyant sur $\langle --$ ou sur $-- \rangle$.

Après avoir sélectionné le chiffre voulu, appuyez sur la touche de fonction étiquetée -- pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.

4. Appuyer sur ENTER.

Réglage du nombre d'échantillons par déclenchement

En mode de déclenchement externe, le multimètre effectue entre 1 et 50 000 mesures par déclenchement reçu.

Pour définir le nombre d'échantillons ou de mesures relevées par le multimètre par déclenchement recu:

- 1. Appuyez sur Setup pour afficher le menu de configuration des mesures.
- 2. Appuyez sur la touche de fonction TRIGGER.
- 3. Appuyez sur la touche de fonction étiquetée # SAMPLES.
- 4. Utilisez les touches de fonction pour définir le nombre d'échantillons entre 1 et 50 000.

Sélectionnez le chiffre dans la valeur en appuyant sur <-- ou sur -->.

Après avoir sélectionné le chiffre souhaité, appuyez sur la touche de fonction étiquetée -- pour diminuer le chiffre, ou sur ++ pour augmenter le caractère.

5. Appuyer sur ENTER.

Branchement d'un déclenchement externe

Le jack TRIG I/O sur la face arrière permet de brancher le multimètre à un signal de déclenchement externe. Le front montant d'un signal TTL déclenche le début des mesures si le multimètre est en mode de déclenchement externe.

La figure 4-9 décrit les trois broches du connecteur TRIG I/O.

4-17

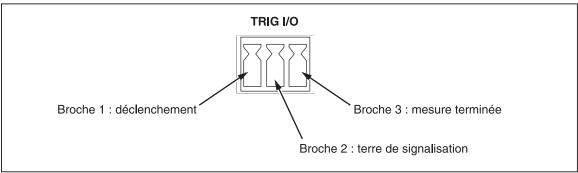


Figure 4-9. Description des broches TRIG I/O

cay059.eps

Surveillance du signal de mesure terminée

Le jack TRIG I/O sur la face arrière sert non seulement d'entrée de déclenchement, il fournit également un signal pour indiquer la conclusion du cycle de mesure. Le front montant positif d'un signal TTL indique que le cycle de mesure est terminé. Reportezvous à la figure 4-9 ci-dessus pour identifier les broches du connecteur TRIG I/O qui permettent de détecter le signal de conclusion des mesures.

Annexes

Annexe	e Titre	Page
A	Cordons de mesure 2x4	A-1
В	Erreurs	B-1
\mathbf{C}	RS-232 Port Connections	C-1

8845A/8846A

Mode d'emploi

Annexe A Cordons de mesure 2x4

Introduction

Les cordons de mesure optionnels Fluke TL2X4W simplifient les mesures de résistance à 4 fils en intégrant les cordons de mesure Hi-Hi et Lo-Lo dans un même câble. Les jacks **Input HI** et **LO** du multimètre comprennent deux contacts. Un contact est branché aux circuits HI ou LO et l'autre aux circuits d'entrée de mesure. Comme les jacks d'entrée, le cordon de mesure 2x4 est muni de deux contacts qui s'alignent avec les contacts du jack d'entrée pour assurer un branchement à quatre fils.

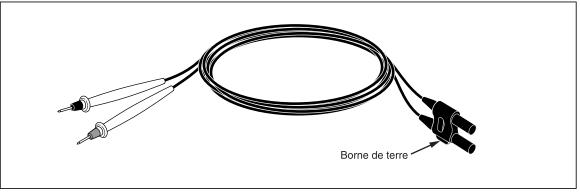


Figure A-1. Cordons de mesure à 2x4 fils

cay061.eps

∧ ∧ Avertissement

Pour éviter les risques d'électrocution et d'endommagement du multimètre, utiliser les cordons de mesure à 2x4 fils conformément aux spécifications de ce manuel. Inspecter les cordons avant de les utiliser. Ne pas les utiliser si l'isolant est endommagé ou si des parties métalliques sont mises à nu. Vérifier la continuité des cordons de mesure. Remplacer les cordons endommagés avant d'utiliser le multimètre

8845A/8846A

Mode d'emploi

Annexe B Erreurs

Introduction

Le multimètre utilise les messages suivants pour signaler un problème.

AC Line frequency too high

Invalid calibration step number

*TRG/GET received but was ignored

488.2 I/O deadlock

488.2 interrupted query

488.2 query after indefinite response

488.2 unterminated command

A fatal error occurred configuring the serial port

A fatal error occurred opening the serial port

AC Line frequency too low

Acknowledgement queue full

ACPOLE: all CAPDAC settings are too high

ACPOLE: all CAPDAC settings are too low

ACPOLE: no CAPDAC setting is close enough

Bad CRC

Bad keyword

Bad parameter value

Cal reference value out of tolerance

Cal secured

CAL? only works if you are calibrating

Calibration Aborted

Calibration measurements out of tolerance

Calibration steps out of sequence

CALibration:DATE not supported for the 8846A

Can't get 1V/10V DC linearization constants

CCO constant name is bad

Character string was more than 12 characters

Command not allowed in local

Command only allowed in RS-232/Ethernet

Could not open guard crossing port

Could not open measurement file on USB device

Could not open the ethernet port

Could not save configuration

Could not save MAC address

Could not save network configuration

Data stale

Error occurred reading characters from Ethernet port

Error occurred reading characters from GPIB controller

Error occurred sending characters to the GPIB controller

Error occurred when purging memory

Error opening GPIB Controller

Error setting GPIB Primary Address

Error setting the RTC/System date

Error setting the RTC/System time

Ethernet port not available in Fluke 45 emulation mode

Function/2nd func mismatch

Function/math mismatch

Function/range mismatch

Generic Execution Error

Got out of sequence packet

GPIB Command byte transfer error

GPIB DOS Error

GPIB File System Error

GPIB I/O operation aborted (time-out)

GPIB Interface Board has not been addressed properly

GPIB Invalid argument

GPIB No capability for operation

GPIB No present listening devices

GPIB Non-existent GPIB board

GPIB Routine not allowed during asynchronous I/O operation

GPIB Serial poll status byte lost

GPIB Specified GPIB Interface Board is Not Active Controller

GPIB Specified GPIB Interface Board is not System Controller

GPIB SRQ stuck in ON position

GPIB Table problem

Guard crossing link failed to start

Guard crossing restarted

Illegal Data value was entered

Illegal/Unknown NPLC Selection

Illegal/Unknown TRIGGER Selection

Incorrect packet size from inguard

Info packet rec'd; link not active

Inguard Calibration Constant write failed

Inguard not responding (recv)

Inguard not responding (send)

INITiate received but was ignored

Instrument configuration load failed

Instrument configuration store failed

Insufficient memory

Invalid dimensions in a channel list

Invalid parameter

Invalid parameter

Invalid response type from inguard

Invalid secure code

Invalid string data

Invalid suffix in command header

Line too long (greater than 350 characters)

Load reading from file failed

Lost sync with inguard

Math error during calibration

Measurement configuration load failed

Measurement configuration store failed

Measurement data lost

Missing or wrong number of parameters

No entry in list to retrieve

No error

No measurements taken during calibration

Not ACKing my packets

Numeric value is invalid

Numeric value is negative

Numeric value is real

Numeric value overflowed its storage

Overload at input during calibration

Oversize packet rec'd

Parameter is not a boolean type

Parameter is not a character type

Parameter is not a numeric type

Parameter is not an quoted string type

Parameter is not an unquoted string type

Parameter type detection error

Port value is out of range (1024 to 65535)

Present function is invalid for selected command

Quality indicator too low

RS-232 framing/parity/overrun error detected

Secondary function is not enabled

Secure code too long

Self Test Failed

B-3

Serial buffer full

Someone forgot to call begin (cal)

Someone forgot to call begin (ICONF)

Someone forgot to call begin (MCONF)

Store reading to file failed

String size is beyond limit

Suffix Error. Wrong units for parameter

Syntax error

Time out while taking data

Timeout error during calibration

Timeout occurred while opening the ethernet port

Too many dimensions to be returned

Too many errors

Tried to set invalid state

Tried to set invalid state

Trigger Deadlock

Trigger ignored (just like 34401)

Unable to access storage memory

Unknown ACK byte

Unknown Calibration Constant

Unknown control byte

Unknown error %d

Unknown Function Selection

Unknown Range Selection

Unmatched bracket

Wizard password is invalid

Wrong ACK number

Wrong number configuration acknowledgement

Wrong type of parameter(s)

Annexe C Connexions sur le port RS-232

Introduction

Le tableau C-1 répertorie les broches et signaux correspondants disponibles sur le port RS-232.

Tableau C-1. Liste broches/signal RS-232

Broche	Nom	Utilisation
1	DCD	Inutilisée
2	RX	Réception des données
3	TX	Émission des données
4	DTR	Inutilisée
5	GND	Terre du signal
6	DSR	Inutilisée
7	RTS	Demande d'envoi
8	CTS	Prêt à envoyer
9	RI	Inutilisée

Les fils de contrôle RS-232 de l'instrument peuvent être reconnectés à une autre paire que la paire de contrôle RTS/CTS. Cette modification doit être effectuée par un technicien compétent au Centre d'entretien de Fluke. L'ouverture du couvercle de l'instrument pour procéder à cette modification peut invalider la garantie de l'appareil.

8845A/8846A

Mode d'emploi

Indice

	Decalage, reglage, 3-12
—A—	Déclenchement
Affichage	automatique, 3-15
Eléments de l'afficheur, 3-4	Définition du nombre d'échantillons, 3-17
Luminosité, réglage, 3-21	externe, 3-16
Résolution, réglage, 3-7	jack d'E/S, 4-17
Affichage secondaire	Mesure déclenchée, 4-16
activation, 4-3	Réglage du délai, 3-16, 4-17
activation, 4-3	Réglage du mode, 4-16
_	Sélection d'une source, 3-15
—В—	Description complète du produit, 1-3
Béquille	Documentation utilisateur, 1-3
réglage, 2-8	
retrait, 2-8	—Е—
	Enregistrement des configurations, 3-19
—C—	Envoi du multimètre, 2-3
c.a.	Equipement
Mesures de tension, 4-5	Montage en bâti, 2-9
Capacité	Erreurs
Mesures, 4-13	Liste, B-1
Configuration des mesures., 3-7	Valeurs, 3-21
Configurations	Erreurs de mesure
Enregistrement, 3-19	Valeurs, 3-21
Rappel, 3-20	
Continuité	—F—
Réglage du seuil, 3-8	Face arrière, 3-6
Test, 4-14	Face avant, 3-3
Contrôle de diode	Filtre
vérification, 4-15	c.a., 3-8
Courant	continu
Mesures de courant alternatif, 4-12	Tension continue, 4-4
mesures de courant continu, 4-11	Continu
_	Courant continu, 4-11
—D—	Résistance, 4-8
Date d'étalonnage	Fluke
Vérification, 3-22	contacter, 2-3
Date, définition, 3-22	Fonction MX+B, 3-12
Déballage du multimètre, 2-3	Fonctions d'analyse

Histogramme, 3-14	Courant alternatif, 4-12
Mathématique	Courant continu, 4-11
Tests de limites, 3-11	Rappel, 3-18
Mathématiques	Résistance, 4-7
Décalage, 3-12	2 fils, 4-7
MX+B, 3-12	4 fils, 4-8
Statistiques, 3-10	Tension, 4-4
TrendPlot, 3-13	Tension alternative, 4-5
Fonctions de déclenchement, 3-15	Tension continue, 4-4
Fonctions mathématiques	Mesures de fréquence, 4-6
Décalage, 3-12	Mesures de périodes, 4-6
MX+B, 3-12	Mesures de résistance
Tests de limites, 3-11	2 fils, 4-7
Fréquence	4 fils, 4-8
Mesures, 4-6	Micrologiciel
Fusibles	Vérification de la révision, 3-21
Alimentation secteur, 2-4	Mise sous tension, 2-8
Entrée de courant, 2-5	Modificateurs de fonction, 4-3
—G—	—N—
Gamme	Navigation sur la face avant, 3-7
Touche, 3-7	Nettoyage du multimètre, 2-9
rodene, 5 /	rettoyage da matimette, 2 7
—H—	—0 —
Heure, définition, 3-22	Opérations mathématiques, 3-9
Histogramme, 3-14	Options et accessoires, 1-7
Horloge	
Définition de l'heure et de la date, 3-22	—P—
— —	Paramètres par défaut, restauration, 3-22 Période
Impédance d'entrée, automatique, 3-9	Mesures, 4-6
Informations sur la sécurité, 1-4	1110001100, 1 0
Inspection du multimètre, 2-3	—R—
1	Rappel des configurations, 3-20
— L —	Rappel des mesures, 3-18
Les manuels, 1-3	Résistance Mesures, 4-7
—M—	RTD
	Mesures de température, 4-13
Measurements	r
Température, 4-13	_S _
Mémoire	_
Configuration	Sélection de la tension secteur, 2-4
Enregistrement, 3-19	Sources de déclenchement, 3-15
Rappel, 3-20	Spécifications, 1-9
Gestion, 3-20	Statistiques
Rappel des mesures, 3-18	relever, 3-10
Stockage des mesures, 3-17 Mémoire, accès, 3-17	Stockage des mesures, 3-17 Stockage du multimètre, 2-3
Mesure terminée	
Explication, 3-17	Symboles, 1-6
Surveillance, 4-18	=
Mesures	—T—
Capacité, 4-13	Température
Courant, 4-10	réglage de l'échelle par défaut, 3-9
	Températures

Mesures, 4-13 Tension Mesure de tension continue, 4-4 Tension Mesures de tensions alternatives, 4-5 Tension continue Mesures, 4-4 Test de diode réglage de la tension de conformité, 3-9 réglage du courant, 3-9 Tests de limites définition des seuils, 3-11 Utilisation, 3-11 Touches étiquettes de fonction, 3-5 Fonction, 3-4 Gamme, 3-7 TrendPlot, 3-13

__V__

Valeurs

Stockage, 3-17

8845A/8846A

Mode d'emploi