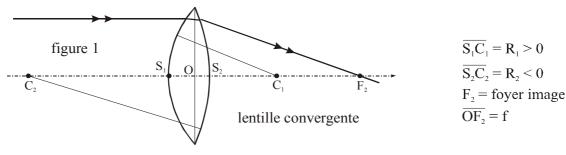
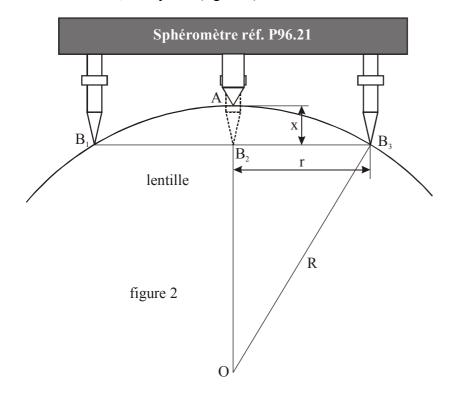
### **Le : 10 décembre 2007**


# NOTICE D'UTILISATION SPHÉROMETRES

#### **Définition:**

Un sphéromètre est un appareil de mesure permettant de déterminer les rayons de courbure

des faces d'une lentille afin d'en déterminer la focale  ${\bf f}$  par la relation :


$$\frac{1}{f}$$
 = C =  $(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ 



**n** étant l'indice de réfraction du verre constituant la lentille. Pour un verre ordinaire, on a : n = 1,5.

## **<u>Détermination du rayon de courbure R</u>**:

Les sphéromètres mesurent précisément la flèche x entre le sommet central mobile  $\mathbf{A}$  et le cercle de base du sphéromètre ou les trois points d'appui  $\mathbf{B}_1$ ,  $\mathbf{B}_2$  et  $\mathbf{B}_3$  situés sur le cercle de base, de rayon  $\mathbf{r}$  (figure 2).



Surface plate 
$$=> x = 0$$
  
Surface convexe  $=> x > 0$   
Surface concave  $=> x < 0$ 

De la mesure de x, on en déduit la valeur de R par la relation :

$$R = \frac{r^2}{2x} \left( 1 + \frac{x^2}{r^2} \right)$$

Dans les cas où  $\underline{x} \le \underline{r}$ , on peut prendre la relation approchée :

$$R \cong \frac{r^2}{2x}$$

## <u>Caractéristiques des sphéromètres</u>:

```
Réf. P96.20 => r = 19,5 mm ; graduations au 1/50 mm ; -15 \le x(mm) \le 15 ; cercle de base Réf. P96.21 => r = 35,0 mm ; graduations au 1/200 mm ; -20 \le x(mm) \le 20 ; 3 points d'appui Réf. P96.22 => r = 19,5 mm ; graduations au 1/100 mm ; -5,5 \le x(mm) \le 5 ; 3 points d'appui Réf. P96.23 => r = 10,0 mm ; graduations au mm ; -1 \le x(mm) \le 0,5 ; cercle de base
```